PROGRAMA DE EDUCACAO CONTINUADA DA ESCOLA POLITECNICA DA
UNIVERSIDADE DE SAO PAULO

Luis Gustavo Pariz Campos

ARQUITETURA DE ARMAZENAMENTO ON-PREMISE APLICADA A
MANIPULACAO DE ARQUIVOS PEQUENOS EM HDFS

Sao Paulo

2016

Luis Gustavo Pariz Campos

ARQUITETURA DE ARMAZENAMENTO ON-PREMISE APLICADA A
MANIPULACAO DE ARQUIVOS PEQUENOS EM HDFS

Monografia apresentada ao PECE -
Programa de Educacdo Continuada da
Escola Politécnica da Universidade de Séo
Paulo para obtencéo do titulo de Especialista
pelo programa de Big Data: Inteligéncia na
Gestéo dos Dados.

Orientador: Profa. Dr. Luiz Sérgio de Souza

Sao Paulo

2016

Dedico este trabalho a minha familia, aos professores e amigos que estdo sempre
préximos para compartilhar dificuldades e éxitos.

"Ha homens que lutam um dia e sao bons.
Hé& outros que lutam um ano e sao melhores.

Ha os que lutam muitos anos e sdo muito bons.
Porém, ha os que lutam toda a vida.

Esses sao os imprescindiveis."

Bertolt Brecht

RESUMO

O HDFS foi concebido para manipular arquivos grandes. Contudo, se observa que
em cenarios com grande volume de dados oriundos de redes sociais ou aplicacbes
do tipo near real-time, normalmente, sdo geradas enxurradas de arquivos com
tamanho menor que a blocagem padrdao do HDFS. 1Isso leva, a um uso nao
otimizado do HDFS. Por outro lado, a literatura apresenta solucbes que visam
melhorar o desempenho desse sistema de arquivos. Entretanto, encontrar e
selecionar solugcbes adequadas exige tempo, o0 que normalmente falta aos
profissionais devido a grande carga de trabalho diario. Assim, para auxiliar 0s
profissionais responsaveis em desenhar solu¢cdes de software e infraestrutura, essa
monografia redne, numa Unica fonte, informacdes necessarias que auxiliem o
profissional a estruturar o HDFS de forma mais eficiente, com melhor desempenho
nas operacoes de leitura e escrita. Os estudos, que foram base para a elaboragéo
dessa monografia, melhoram o desempenho do HDFS em até 7x nas operacdes de

escrita e duplicacdo em instrucdes de leitura.

Palavras-chave: HDFS. Hadoop. Arquivos pequenos. Armazenamento Heterogéneo

ABSTRACT

The HDFS has been designed to handle large files. However, if notes that in
scenarios with large volume of data from social networks or applications of the near
real-time type usually are storms generated files with size less than blocking standard
of HDFS. This leads to a non-optimized use of HDFS. On the other hand, the
literature presents solutions to improve the performance of this file system. However,
find and select appropriate solutions requires time, which typically lack the
professionals due to the large supply of daily work. Therefore, to help the
professionals responsible to design software and infrastructure solutions, this
monograph brings together in a single source information necessary to help the
professional to structure the HDFS more effectively, with better performance in
reading and writing. The studies, which were basis for this monograph, improve the
performance of the HDFS by up to 7 x in write operations and duplicate in reading

instructions.

Keywords: HDFS. Hadoop. Small files. Heterogeneous Storage

LISTA DE FIGURAS

Figura 1 Modelo centralizad0 NO SErVIAOroeiiieeiiiieeiiiie e e e e eeaaens 17
Figura 2 Modelo centralizado na iNfOrMaga0..............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieees 17
Figura 3 Modelo SNIA de armazenamento de dados compartilhado. 18
Figura 4 Arquitetura do HDFS.coiiiiiiiic e e e e e eeaanns 25
Figura 5 Replicac8o d0S DIOCOS.ciiiiiiiiiieiiiie e e e 26
Figura 6 Processo de leitura em HDFS.uuuiiiiiiiiiiiiiiiiiiiiiiiiiieees 28
Figura 7 Processo de escrita em HDFS. ...t 29
Figura 8 Consumo de memadria RAM por objeto. ..o, 32
Figura 9 Arquitetura do modelo HMPIl em 3 camadas.cccceeevvvvveiiiiiiiiieeeeeeeennnns 35
Figura 10 Comparativo entre teCNOIOGIAS.uuuuuururuiiiiiiiiiiiiiiiiiiiiiiieeibebieeieeaeees 36
Figura 11 Politicas de pOSICIONAMENTO.uuuuuruuiiiiiiiiiiiiiiiiiiiieiieeeeeeieeeeeeeeeeeeeees 38
Figura 12 Uso de memdria do NameNOode.cccooviiiiiiiiiiiiiii e, 40
Figura 13 Uso de memoéria do DataNode.cccoooviiiiiiiiiiiiie e 40
Figura 14 Comparagdo de conSUMO A€ tEMPO.uuuuruurririiiiiiiiiiiiiiiiiiiiiiiinenienaaaaees 41
Figura 15 Avaliagéo do TestDFSIO no Cluster C em eSCrita.uvvveveeeninnnnnnnns 42
Figura 16 Avaliacdo do TestDFSIO no Cluster C em leitura............ccccccceeeeeeeeeenennnn, 43
Figura 17 Tempo de execucdo do RandomTeXtWIter.cccooeeeeiiiiiiiiiiiieeeeeeeeeeinns 44
Figura 18 Tempo de exeCuGao dO TEraGEeN.uuuuuuruiiiiiiiiiiiiiiiiiiiiiiiiiiiiieaeeeeaaaees 44
Figura 19 Tempo de execugado do RandOmMWIILEN.uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiinaees 45
Figura 20 Resultados do TestDFSIO no Cluster A em eSCrita...............vveviveveennnnnns 46

Figura 21 Resultados do TestDFSIO no Cluster C em escrita.cccoooeeevevviieeeeennnn. 46

LISTA DE ABREVIATURAS E SIGLAS

CAPEX Capital Expenditure

CIFS Common Internet File System

DAS Direct Attached Storage

FC Fibre Channel

FCIP Fibre Channel over TCP/IP

FCP Fibre Channel Protocol

GFS Google’s Distributed File System

HIPI Hadoop Image Processing Interface
HMPI Hadoop Multimedia Processing Interface
HPC High-Performance Computing

ISCSI Internet Small Computer System Interface
JAR Java Archive

LAN Local Area Network

NAS Network Attached Storage

NFS Network File System

POSIX Portable Operating System Interface
RAID Redundant Array of Independent Disks
SAN Storage Area Network

SMB Server Message Block

WAN Wide Area Network

WORM Write-Once-Read-Many

SUMARIO

1 INTRODUGAOottt ettt et ts ettt e st e et te et ete e s eeere e 11
1.1 MOtIVAGEO € JUSHIFICALIVA ...ttt 12
2 ©] o] =] 1Y o SO RRRPPPPPPIN 13
IR O] o1 11U o= o 0SSP 13
I/ =7 (oo (o] [0 | - O RRSSPPPPPN 13
1.5 ESIUTUMAGEODttt 14

2 FUNDAMENTAGAO TEORICA ... 15
A N (o (U1 (=] (1 = U RURRRPPPPPN 15

2.1.1 Arquitetura Conceitual de DadosS.........ccooveeeeiiiiiiiiiiii e 15
2.1.2 Arquitetura LOgica de DAdOSeeeeiieeiiiiiiiiiiiieeee e 16
2.1.3 Arquitetura Fisica de DadOSeeeiieeeiiiiiiiiiieiiee e 16

2.2 Evolucao da arquitetura de armazenamentoccccoeeeeeeeeeeiiiiiieieeeeeeeeennnns 16
2.2.1 Tecnologias de Armazenamentocccoeeeeeeeeeeiriiiiieeeeeeeeeeiiee e 17
2.2.1.1 Direct Attached Storage (DAS)ceeeiiiieeiieiieee e, 19

2.2.1.2 Network Attached Storage (NAS)cceeveeieiiiiiiiiiiiee e, 20

2.2.1.3 Storage Area Network (SAN)uuuuiiiiiiiiiiiiiiiiinee 20

2.3 Framework HAdOOP........cooooeeieeeeeeeeeeeeeeee e 22
2.4 HDFES . a e e aane 24
2.4.1 Replicagao de arqUIVOSccooeiiiieiieeeeeeeeee e 26
2.4.2 BIOCOS € @rQUIVOvuvieiiiii ettt e e e e e 27
2.4.3 Anatomia de leitura do HDFS ... 27
2.4.4 Anatomia de escrita do HDFS ..., 28

2.5 Trabalnos COrrelatos ... 29

3 SOLUGAO PROPOSTA ..ottt ettt ettt ettt sttt 31

10

3.1 DescCricao do ProblemMaccoiiiiiiiiice e 31
3.2 Tratativa do Problemaccovviiiiiiii e e 32
3.3 Resultados ODLIAOS.ccooiiiiiiiii 39
A CONCLUSAO ...ttt 47

5 REFERENCIAS BIBLIOGRAFICASccoviiiieieeecieeeeete et 49

11

1 INTRODUCAO

O inicio do planejamento de construcdo de um ambiente computadorizado necessita
de uma arquitetura bem definida para se obter éxito. A arquitetura pode ser
compreendida como a forma que se dispdem as partes ou 0s elementos em um
determinado cenario. Ainda assim, pode-se observar que a arquitetura relaciona

normas, materiais e técnicas, especificacdes e formas de execucdao.

Dentro do tempo necessario para a definicdo de uma arquitetura diversos pontos
importantes devem ser analisados, cada cenario merece atengdo as suas
peculiaridades e limitacdes, pois ndo existe uma chave mestra, que solucione todas

as necessidades.

Os dados gerados por individuos ou por maquinas devem ser armazenados e
recuperados de forma rapida e facil. No ambito da computacdo, as solucdes de
armazenamento precisam ser desenhadas para atender a estes requisitos. Os dados
podem persistir em um cenario caseiro, por exemplo: em cartdes de memoria, CDs,
DVDs e discos rigidos. J& no cenario corporativo, sao diversas as formas que se
pode encontrar para armazenar dados, como exemplos: solucbes DAS (Direct-
Attached Storage), SAN (Storage-Area Network), NAS (Network-Attached Storage),

fitas entre outras tecnologias.

A transformacédo do modelo de arquitetura de armazenamento, tem-se dado pela
descentralizacdo dos equipamentos que mantém os dados acessiveis.
Historicamente, os servidores usavam um desenho, tipicamente, interno de
persisténcia. Com o tempo, esse modelo sofreu alteracdes e os dados passaram a
ndo mais serem armazenados internamente, provendo a possibilidade de
gerenciamento independente dos dados. (GNANASUNDARAM; SHRIVASTAVA,
2012)

A evolucédo dos meios de armazenamento esta permitindo acompanhar o avanco do
volume de dados gerados. Essa geracédo néo apresenta comportamento linear, visto
gue 90% de todos dados de hoje foram criados somente nos ultimos dois anos. O
aumento da capacidade de processamento, em conjunto com o desenvolvimento de

equipamentos periféricos portateis, tém trazido um cenario favoravel a Internet das

12

Coisas. Esse conjunto de tecnologias que conecta uma infinidade de itens, gera

dados a todo instante e se torna um importante impulsionador para Big Data.

A primeira fase de um processo Big Data esta na coleta dos dados. Uma vez que
esses dados séo coletados, eles precisam ser armazenados em uma determinada
area local, chamado de modelo on-premise, para se extrair informacgdes. (TAURION,
2013). No contexto de tecnologias Big Data, o framework Hadoop foi concebido
para processamento distribuido dos dados. O HDFS (Hadoop Distributed File
System) é o sistema de arquivo que da suporte ao Hadoop para o armazenamento

distribuido, performatico, capaz de guardar volumetrias significativamente grandes.
1.1 Motivacéo e Justificativa

Este trabalho iniciou-se a partir da observacdo do cotidiano dos arquitetos de
solugdes de armazenamento, que com a crescente avalanche de dados oriundos do
cenario de Big Data, tém encontrado dificuldades para prover desempenho

necessario ao negaocio.

O estudo foi entdo embasado na avaliagdo dos problemas encontrados para
realizacdo de armazenamento de dados provenientes de utilitarios do Hadoop.
Observou-se que o HDFS foi projetado, inicialmente, para ser utilizado com arquivos
grandes (maiores que 64 MB), entretanto, tém-se notado que na verdade sdo os
pequenos arquivos (menores que 64 MB) os quais estdao sendo mais persistidos e
que de certa forma prejudicam o desempenho das aplicagdes.

A resultante de um design de armazenamento eficaz é peca fundamental para obter
éxito na aplicacdo. Alguns itens sdo essenciais nessa fase e devem ser levados em

consideracao:

e Tempo de resposta desejado pela aplicagéo;
e Area necessaria para atender o volume inicial e crescimento esperado;
¢ Nivel de protecdo dos dados (integridade dos dados);

e Forma de acesso ao repositério;

A busca por tecnologias com melhor desempenho, aliadas a economia, tem levado a

forma como os dados sdo armazenados sofrerem mudancas. Nesse cenario de

13

transformacao, a utilizacdo do HDFS para persistir os dados, principalmente, em
ambientes com grande quantidade dados, tem sido a forma mais escolhida.
Acolhendo a essa tendéncia e notando a dificuldade encontrada por profissionais da
area de arquitetura, pretende-se gerar estudos que possam servir como um guia
para resolucdo dos problemas encontrados no HDFS com arquivos pequenos e as

limitacdes do modelo de armazenamento.
1.2 Objetivo

O objetivo deste trabalho é apresentar solu¢cdes de concatenacdo dos arquivos e
armazenamento heterogéneo encontradas na literatura para melhorar e eficiéncia
nas operacdes de leitura e escrita no HDFS, considerando uma carga massiva de

arquivos pequenos.
1.3 Contribuicéao

Como contribuicdo busca-se apresentar num Unico material informacfes
encontradas em diferentes pesquisas que apresentam solu¢cdes para melhoria do
desempenho do HDFS com quantidade massiva de arquivos de tamanho reduzido

(menores que 64 MB). O trabalho ainda podera servir & outras pesquisas

relacionadas ao armazenamento em sistemas de arquivos distribuidos.
1.4 Metodologia

O trabalho iniciou-se com a observacao da dificuldade encontrada por arquitetos e
outros profissionais de TI, em desenhar estruturas destinadas ao HDFS que
possuam bom desempenho com arquivos pequenos. Deste modo, com a
necessidade de trazer melhorias aos processos e desempenho no armazenamento
de arquivos menores que a blocagem padrédo do HDFS, foram realizadas pesquisas
bibliograficas no anseio de buscar solugdes que trouxessem uma forma possivel de
desenhar esse ambiente. Na pesquisa estdo contidos elementos de artigos que

auxiliam na

Apés a identificacdo deste problema, foi iniciada a busca bibliografica por solu¢des

através de livros, foruns e artigos técnicos relacionados a arquitetura de

14

armazenamento que abortassem essa deficiéncia. Entretanto, ndo foram
encontrados materiais que unissem solu¢des completas, fim-a-fim, para manipulacéo

de arquivos pequenos, aliadas a persisténcia inteligente dos blocos.

Foi encontrado entre os artigos elencados, um conjunto de solugdes que propiciam
ao HDFS desempenho para atender as necessidades de ambientes Big Data, com
essas caracteristicas. As propostas foram alinhadas, ao passo que o resultado deste
trabalho foi um guia, que parte do entendimento da necessidade do negdcio, ou
seja, o throughput esperado pelo sistema/aplicacdo, chegando a adequacdo da
manipulacdo e persisténcia dos arquivos, empregando técnicas recomendadas pelas

referéncias elegidas.
1.5 Estruturacao

Este trabalho foi divido da seguinte forma: no Capitulo 2 tém-se os preceitos tedricos
desta monografia, que abordam a arquitetura de armazenamento, o sistema de
arquivos distribuidos do framework Hadoop e sua utilizacdo em cenérios de grande
volume de dados. Estdo também presentes nessa secao, os trabalhos correlatos que

nortearam o desenvolvimento desta monografia.

No Capitulo 3, apresenta-se o desenvolvimento do trabalho proposto, através de
exemplos de solugcbes de armazenamento e técnicas usadas para melhoria do
desempenho que estdo surgindo para aperfeicoar a experiéncia com Big Data.
Finalmente, no Capitulo 4, ttm-se as consideracdes finais, a concluséo e propostas

aos trabalhos futuros.

15

2 FUNDAMENTACAO TEORICA

Nesse capitulo aborda-se a base conceitual necessaria ao desenvolvimento deste
trabalho. Na secédo 2.1 estdo as definicdes iniciais de arquitetura, na secéo 2.2 esta
a evolucao da arquitetura de armazenamento e tecnologias utilizadas atualmente, na
secdo 2.3 esta o framework Hadoop e seus principais aplicativos. Ao final, na secéo
2.4 esta o detalhamento do HDFS.

2.1 Arquitetura

De acordo com Michaelis (2016) arquitetura pode ser entendida como a forma que
se dispbéem as partes ou 0s elementos dado um cenario. Deste modo, pode-se
observar que a arquitetura relaciona normas, materiais e técnicas, especificacdes e

formas de execucéo.

No ambito computacional, focado em dados, a arquitetura de armazenamento
descreve como os dados sdo processados, persistidos e servem ao negocio, em
geral. Ainda especifica os critérios para as operacdes de processamento de dados,

deste modo, é possivel controlar o fluxo das informacdes.

A responsabilidade do arquiteto nesse segmento, € garantir que os dados seréo
acessados pelas aplicacdes com eficiéncia, por meio de especificacdes acertadas de
acordo com a necessidade do negécio. A melhoria dos resultados acompanha todo
0 processo, o trabalho de agregar melhores rendimentos aos equipamentos de
armazenamento estdo no dia-a-dia deste profissional. Todas essas acbes sao

realizadas usando-se da divisdo da arquitetura em: conceitual, fisico e légico.
2.1.1 Arquitetura Conceitual de Dados

Essa forma de arquitetura tem como objetivo confeccionar um modelo conceitual de
armazenamento dos dados. Traz uma visdo de alto nivel do ambiente, o qual da
assisténcia as necessidades do negécio de uma organizacdo, norteando as
decisbes sobre as tecnologia dispostas. Nesse modelo, o destaque € para relacdes

de negocio da empresa como um todo, descartando-se assim, inicialmente,

16

limitacbes tecnoldgicas, pois estas serdo tratadas nas proximas formas, mais
amadurecidas nesse aspecto. (KLUG; TSICHRITZIS, 1975)

2.1.2 Arquitetura Logica de Dados

Na arquitetura l6gica de dados, sdo descritos com detalhes as propriedades e 0s
relacionamentos de cada um dos grupos de dados relacionados ao negécio. Nessa
forma de arquitetura, tém-se como produto: estruturas normatizadas, relacionamento
entre os dados, além de um modelo organizacional de gerenciamento. (KLUG;
TSICHRITZIS, 1975)

2.1.3 Arquitetura Fisica de Dados

A arquitetura fisica de dados esta diretamente ligada ao meio fisico que os dados
serdo persistidos, concentrando as atengdes na composicdo de elementos reais e
tangiveis a serem utilizados. E nessa fase que sio definidas no detalhe as
especificacdes técnicas e tecnologias responsaveis pelo correto funcionamento das
aplicacbes e, por consequéncia, suporte necessario ao negocio. (KLUG;
TSICHRITZIS, 1975)

2.2 Evolugao da arquitetura de armazenamento

A evolucdo da arquitetura de armazenamento, esta na descentralizacdo do modelo
de acesso aos dados. Historicamente, os servidores usavam um modelo conhecido
como DAS (Direct Attached Storage), método local de se conectar aos dispositivos
de armazenamento. Na arquitetura direta de acesso, cada servidor possui um
namero restrito de dispositivos exclusivos e as tarefas administrativas, como
manuten¢gdes ou crescimento de capacidade, ocasionavam indisponibilidade das
informacgdes. (GNANASUNDARAM; SHRIVASTAVA, 2012)

Todavia a necessidade por gerenciar os dados de forma néao exclusiva pelo servidor
hospedeiro, fez este cenéario centralizado no servidor (Server-Centric Fig.1) ser

substituido por outro modelo centrado em informagdes (Information-Centric Fig. 2).

17

Dapartment 1 Department 2 Department 3 Dep;:tmem 1 Dep;e“n':‘:rm 2 Department 3
Sarver Sarver Sarvar rer Server
L] L] L]
. .]
[L e EEE
(a} Server-Cantrlc Storage architecture J N
'S TN

Storage
Netwaork

Figura 1 Modelo centralizado no servidor '|"“

Fonte: Gnanasundaram e Shrivastava, 2012. 11

Storage Device

(B} Informatlon-Centrlc Storage Architecture

Figura 2 Modelo centralizado na informacéo

Fonte: Gnanasundaram e Shrivastava, 2012

Através desta mudanca, o modelo sofreu alteracbes e os dados passaram a néo
mais serem armazenados internamente, possibilitando através de uma rede de
armazenamento, acesso por diversos servidores ao mesmo tempo. Além disso, a
evolugcdo da arquitetura de armazenamento trouxe o gerenciamento independente
dos dados, deste modo, as atividades como: crescimento de capacidade de
armazenamento, manutencdes em servidores e migracées de ambientes, passaram
a ndo mais interromper as aplicacdes, protegendo os negocios da instituicdo.
(GNANASUNDARAM; SHRIVASTAVA, 2012)

2.2.1 Tecnologias de Armazenamento

As tecnologias de armazenamento de dados sdo nomeadas de acordo com as
formas pelas quais sao conectados os dispositivos de armazenamento de dados aos
sistemas computacionais e pelo tipo de informacédo que é trocada entre eles. As
principais tecnologias de armazenamento existentes sdo DAS (Direct Attached
Storage), NAS (Network Attached Storage) e SAN (Storage Area Network). Como
indicado anteriormente, o modelo DAS tem o0 acesso através de um barramento local
ou outro meio fisico aos dispositivos de armazenamento. Ja o modelo NAS permite
acesso atraves de redes LAN e WAN por meio de protocolos como NFS (Network
File System), SMB (Server Message Block) e CIFS (Common Internet File System).

Por ultimo, o modelo SAN que prové uma rede dedicada de transferéncia de dados

18

em baixo nivel, similar as instru¢cdes internas em discos, como SCSI.
(GNANASUNDARAM; SHRIVASTAVA, 2012)

Para dividir as tecnologias de armazenamento de dados, sera utilizado o modelo
desenvolvido pela SNIA. Criada em 1997, a SNIA (Storage Network Industry
Association) € uma organizacao global sem fins lucrativos, constituida por empresas
associadas, abrangendo o mercado global de armazenamento de dados, cuja
missdo € liderar a industria de armazenamento mundial no desenvolvimento e
promocdo de padrdes, tecnologias e servicos educacionais para capacitar as

organizacdes na gestdo da informacao. (SNIA, 2016)

Através do modelo criado pela SNIA (Fig. 3), o qual € chamado de Modelo de
Armazenamento Compartilhado de Dados (Shared Storage Model), pode-se
apresentar uma estrutura genérica para arquitetura de armazenamento de dados
compartilhados, relacionando os servicos com as formas de acesso aos dados. Por
meio deste modelo, se torna viavel mapear o cenario presente de armazenamento
de dados para as solugcdes propostas, ajuda a esclarecer o que as tecnologias estao
enderecando e também cria uma base de conhecimento para atender futuras

necessidades da aplicacao.

erecord laye
Fil= syste
(FS)

0

o

L

Network t

Block [

aggregation L
Block layer /

SNIA

Copyright @ 2000,2003 Storage Networking Industry Association Starage Netwarking Industry Associatian

Figura 3 Modelo SNIA de armazenamento de dados compartilhado.
Fonte: SNIA, 2016.

19

Ao analisar a Fig. 3, percebe-se que o modelo proposto pela SNIA estabelece uma
alianca entre a aplicacdo, que é executada no ambito computacional, ou seja, nos
servidores e o dominio de armazenamento de dados. Nesse modelo de arquitetura

de dados, pode-se subdividir o dominio de armazenamento em duas camadas:

e Camada de Arquivo/Registro (File/ Record Layer) - € a interface entre o
nivel mais alto de aplicacdes e 0s recursos de armazenamento, representada
pela sequéncia de bytes de informac¢des que formam registros ou arquivos.

e Camada de Blocos (Block Layer) - é a faixa de baixo nivel do
armazenamento onde o0s blocos de dados s&o persistidos ou lidos no

hardware, comumente chamado de Storage.

Através do Modelo de Armazenamento Compartilhado de Dados, proposto pela
SNIA, pode-se tratar das diferentes formas de armazenamento, listando as principais
caracteristicas das tecnologias DAS, NAS e SAN.

2.2.1.1 Direct Attached Storage (DAS)

A tecnologia de armazenamento compreendia como DAS, é a forma de persistir os
dados mais simples, pela auséncia de uma rede de comunicacgéo entre o servidor e
o periférico de armazenamento, os discos sdo internos ou estdo em um gabinete
conectado diretamente ao servidor que faz a geréncia dos dados. A comunicagao
nesse modelo de arquitetura € feita, usualmente, pela tecnologia SCSI (Small
Computer System Interface) paralelo. (GNANASUNDARAM; SHRIVASTAVA, 2012)

Nesse modelo de entrega de volumetria, o canal de comunicagdo fisico possui
limitacdes restritas de distancia e dificuldade para entregar alta carga de dados.
Além disso, outro fator que restringe o uso deste modelo em cenarios empresariais,

é a limitacdo da quantidade de discos e indisponibilidade em caso de manutencgao.

DAS requer um investimento inicial muito inferior se comparado a outras tecnologias
como SAN, por exemplo. Tornando-se uma arquitetura facil e rapida de ser
implantada, onde a configuracdo e gerenciamento dos blocos sao realizados pelo
sistema operacional do servidor. (GNANASUNDARAM; SHRIVASTAVA, 2012)

20

2.2.1.2 Network Attached Storage (NAS)

Network Attached Storage prové o compartilhamento de arquivos de forma flexivel,
por meio de uma rede de comunicacdo ndo exclusiva a Storage que une 0s
servidores clientes aos dispositivos de armazenamento, permitindo alcancar longas
distancias, com massiva quantidade de usuarios, beneficio de altas velocidades de
transmissao, alta disponibilidade e consolidacdo de armazenamento. (PRESTON,
2002)

A esséncia do modelo de arquitetura NAS, segundo as definicbes da SNIA, esta em
dispositivos ligados a redes LAN (Local Area Network) e/ou WAN (Wide Area
Network) que trafegam os arquivos através de protocolos de compartiihamento de
arquivos na rede. No cenério atual, os principais protocolos de compartilhamento de
arquivos sédo CIFS/SMB e NFS, destinados aos sistemas operacionais Microsoft

Windows e Unix/Linux, respectivamente.

Os equipamentos de armazenamentos chamados de NAS usam seu proprio sistema
operacional, hardware integrado e componentes de software para atender as
necessidades especificas e executar de forma otimizada o compartiihamento de
arquivos. Seu sistema operacional é desenvolvido para instru¢des I/O de arquivo e,
portanto, executa estas instrucbes de maquina melhor do que um servidor ou PC
(Personal Computer) de uso geral. Como resultado, um dispositivo NAS pode servir
a mais clientes do que servidores de uso geral, aprovisionando consolidagdo de
armazenamento e melhor tempo de resposta. (GNANASUNDARAM;
SHRIVASTAVA, 2012)

2.2.1.3 Storage Area Network (SAN)

A arquitetura de armazenamento conhecida como SAN é de modo geral um modelo
composto por uma rede dedicada ao trafego de dados, geralmente, a nivel de bloco
gue permite que diversos servidores tenham acesso a volumetrias externas de modo
rapido, com alta disponibilidade e seguranca. A entidade de armazenamento que
esta disponivel externamente ndo € limitada em espaco como em uma arquitetura
DAS, onde o dispositivo é interno e por essa razdo nesse modelo séo mais faceis de

manusear quando necessério e trazem facilidades para o compartiihamento por

21

varios servidores. Em um cenario SAN, o dispositivo central € o equipamento
responsavel pela geréncia e disponibilizacdo do dados, o qual é comumente
chamado de Storage. Através da figura do Storage, ocorre a centralizacdo das
operacOes de armazenamento e o gerenciamento dos dados passa a ser tarefa nao
mais exclusiva do servidor. SAo essas as razdes principais pela popularizacédo e
utiizacdo em grande escala das grandes empresas pelo modelo SAN.
(GNANASUNDARAM; SHRIVASTAVA, 2012)

A idealizacdo do modelo SAN iniciou-se com a necessidade de agrupar uma
guantidade elevada de discos, afim de atender a crescente necessidade por
volumetria ao passo que a protecédo das informacfes também ganhava importancia,
através da organizacdo dos discos em RAID (Redundant Array of Independent
Disks). Outro fator que impulsionou o surgimento desta arquitetura foi o
desenvolvimento do padrdo FC (Fibre Channel), que € um protocolo de transferéncia
de dados por meio de fibra 6tica, que propicia a transmissdo em altas velocidades
como 16 Gb/s ou superior. (SNIA, 2016)

Segundo a definicdo proposta pela SNIA sobre SAN, qualquer tipo de rede dedicada
ao uso de armazenamento pode ser usada, no entanto, atualmente, as redes
baseadas em Fibre Channel e Gigabit Ethernet sdo a mais comuns. Nesse cenario
aparecem as redes mais utilizadas: FCP (Fibre Channel Protocol), FCIP (Fibre

Channel over TCP/IP) e ISCSI (Internet Small Computer System Interface).

No cenario atual, os dados das empresas sdo os seus ativos mais valiosos e, Big
Data aumenta as exigéncias das tecnologias de armazenamento presentes, com sua
forma exponencial de crescimento de dados estruturados e ndo-estruturados, além
da necessidade por tempos de resposta cada vez menores, esséncias a
determinadas areas de negocios. (TAURION, 2013) E sobre esse panorama que
surge o framework Hadoop para proporcionar maior capacidade de processamento e

inteligéncia em armazenamento distribuido.

22

2.3 Framework Hadoop

Criado por Doug Cutting, o Hadoop foi originado a partir do Apache Nutch, uma
solucdo open source de pesquisas na web, o qual fazia parte do projeto Apache

Lucene, uma biblioteca de pesquisas, amplamente, utilizado. (WHITE, 2012)

O projeto Nutch teve inicio em 2002, sendo utilizado como uma ferramenta de
pesquisa rapida e rastreador web (web crawler). Entretanto, foi percebido que essa
arquitetura ndo seria capaz de crescer a escala de bilhdes de paginas. Em 2003, por
meio da publicagdo de um artigo a Google apresentou a arquitetura do Google’s
Distributed File System, chamado de GFS e, utilizado no ambiente produtivo desta
empresa. Nessa publicacdo, estavam as principais solu¢cdes dos problemas
encontrados pelo projeto Nutch com a geréncia de armazenamento de arquivos
grandes. Em 2004, o Google apresentou ao mundo o MapReduce. J4 entre 0s anos
de 2005 e 2006 e, com a chegada de Doug Cutting ao Yahoo, o projeto passou a ser
chamado de Hadoop. (WHITE, 2012)

De acordo com a organizacdo Apache, o Hadoop € um framework que permite o
processamento distribuido de larga escala de dados através de computacéo
clusterizada, usando modelos simplificados de programacdo que podem ser

escalonados a milhares de servidores.
Na versdo abordada (2.x), o framework Hadoop é composto pelos mddulos:

¢ Hadoop Commom - 0 ndcleo da estrutura, pois fornece servicos essenciais e
processos basicos, como a abstracdo do sistema operacional subjacente e
seu sistema de arquivos. O Hadoop Common também contém o0s arquivos
JAR (Java Archive) necessarios, os scripts para iniciar o Hadoop, cédigo-
fonte, documentacdes, além de uma sessdo dedicada a contribuicdo de
outros subprojetos do Hadoop.

e Hadoop Yarn - uma ferramenta responsavel pelo gerenciamento dos
recursos computacionais em cluster e agendamento destes recursos. Na
estrutura do Yarn possui um Gerenciador de Recursos (Resource Manager)
global e um Mestre por aplicacdo (Application Master). O Gerenciador de

Recursos e o Gerenciador do N6 (Node Manager) constituem a estrutura

23

computacional. O Gerenciador de Recursos é a autoridade final que arbitra
recursos entre todas as aplicagcdes no sistema. J& o Gerenciador do NO é
responsavel pela estrutura por maquina e monitora 0 uso de recursos como
CPU, memoria, utilizacdo em disco e utilizacdo de rede, narrando os ao
Gerenciador de Recursos. A figura do Gerenciador de Aplicacbes tem a
funcdo de orquestrar as tarefas submetidas, negociar o contéiner para
executar um determinado aplicativo e prover 0s servicos necessarios para
reiniciar um Mestre em caso de um contéiner apresentar falha.

Hadoop MapReduce — € um modelo computacional distribuido, que utiliza-se
de funcdes oriundas da programacédo funcional. O ambiente compreendido
por MapReduce prové aos usuarios uma experiéncia sofisticada na geréncia
de mapeamento e redugdo em tarefas de um cluster Hadoop. (VENNER,
2009) O fluxo das operacfes desta solucdo inicia-se com a leitura de uma
entrada, onde o leitor divide os dados em blocos para a proxima fase. Na
funcdo de mapeamento, os blocos obtidos através do leitor recebem uma ou
mais combinacfes de chave e valor. Com o resultado da funcdo de
mapeamento um redutor € designado a efetuar a particdo, deste modo nesta
fase ocorre a distribuicdo da carga de processamento entre 0os nos. Apés a
tarefa de map concluida, o resultado € comparado com o valores definidos e
direcionado a funcéo reduce, que resume os itens encontrados gerando uma
Gnica saida ou somatério de ocorréncias que serdo persistidos em um
sistema de armazenamento, como o HDFS, por exemplo.

Hadoop Distributed File System (HDFS) — um sistema de arquivos
distribuido adotado pelo framework Hadoop para persistir grande quantidade
de dados, de forma rapida, segura e escalavel a milhares de nos. Através
deste sistema € possivel conectar servidores comuns, conhecidos na
estrutura do HDFS como nds, contidos em clusters onde os blocos de dados
séo distribuidos e assegurados por meio de replicacbes. Deste modo, ocorre
0 acesso e armazenamento dos blocos de dados como um sistema de
arquivos continuo que usa o modelo de processamento MapReduce. Esta

solugdo de armazenamento assemelha-se as demais formas de

24

compartilhamento de arquivos ja presentes no mercado, porém suporta
algumas diferencas importantes, uma destas esta na arquitetura de leitura e
escrita, pois 0 HDFS utiliza o modelo WORM (Write-Once-Read-Many) que
facilita as requisicbes do dominio de simultaneidade, simplifica a persisténcia

de dados e possibilita 0 acesso de alto rendimento aos sistemas de arquivos

2.4 HDFS

Como o foco deste trabalho esta na arquitetura do Hadoop Distributed File System

aplicada a ambientes locais (leia-se on-premise), nessa secao é apresentada uma

descricdo mais detalha deste subprojeto da Apache Software Foundation e solucéo

padrao de persisténcia de dados do Hadoop.

Criado a partir da necessidade de atender as exigéncias de volumes de dados que

tendem ao crescimento exponencial, na ordem de terabytes e petabytes, o HDFS

aparece como uma solucdo de persisténcia de dados em Big Data, pelas principais

caracteristicas de:

Protecdo contra falhas pela deteccdo de erros e aplicacdo de recuperacao
rapida e automatica;

Acesso aos dados através do fluxo Hadoop MapReduce;

Modelo de distribuicdo de arquivos simultaneos simples e robusto;

Légica de processamento orientada aos dados;

Exemplo de sistema do tipo POSIX (Portable Operating System Interface) que
garante a portabilidade entre sistemas operacionais e hardware
heterogéneos;

Escalabilidade para registrar e tratar de modo confiavel larga quantidade de
dados

Reducédo dos gastos com CAPEX (Capital Expenditure) por ser uma solucao
econdmica;

Eficacia na distribuicdo de dados e processamento em paralelo que ocorre

nos nés em que os dados estdo armazenados;

25

e Seguranca e confiabilidade pela replicacdo automatica de vérias copias dos

dados em um cenério a prova de falhas.

O HDFS possui uma arquitetura do tipo mestre/escravo. Em um cluster HDFS tém-
se um unico NameNode, responsavel pela geréncia do sistema de arquivo que tem a
figura de mestre sobre os ndés do tipo escravo, chamados de DataNodes. O
NameNode ainda executa operacfes de namespace do sistema de arquivo como
abertura, fechamento e renomeacao de arquivos e diretorios, além de determina o
mapeamento dos blocos entre os DataNodes. Ja a figura do DataNode é
responsavel por garantir a leitura e escrita das solicitacées dos clientes, ainda assim,
tem a acao de criacao de blocos de dados, bem como a excluséo destes duplicados
no nd. A seguir, pode-se ver na Fig. 4 como sdo distribuidos esses elementos.
(BORTHAKUR, 2015)

—— | Metadata (Name, replicas, ...}
Metadata DF]S.' MNamenode l—’ /home/ffoo/data, 3, ...

N
Block ops
™,
Read Datanodes ., Datanodes
-
|
B = Q N Replication e =
m| = \ jn| Blocks
- \ / L /
N Voo / Y
Rack 1 Wite Rack 2

Figura 4 Arquitetura do HDFS.
Fonte: Borthakur, 2008.
Os elementos desta arquitetura, o NameNode e DataNode sao figuras de software
projetadas para rodar em hardwares de commodities. Estes servidores geralmente
executam sistemas operacionais oriundos de distribuicdes Linux. HDFS € construido
usando a linguagem Java, qualquer servidor que possua suporte a Java pode
realizar o papel de NameNode ou DataNode. Através da linguagem Java, que é

altamente portatil, o HDFS pode ser implantado em uma ampla faixa de maquinas.

Faz parte da figura do NameNode a responsabilidade por manter o namespace do

sistema de arquivo. Qualquer alteracdo no namespace ou nas propriedades do

26

sistema de arquivo, estas sao registradas pelo NameNode. Nas configuracdes
presentes no NameNode, estdo também as opcbes de seguranca, onde um
aplicativo pode especificar o numero de réplicas de um arquivo que deve ser
mantido pelo HDFS. O nimero de copias de um arquivo, nessa estrutura é chamado
de fator de replicacédo de arquivo. (BORTHAKUR, 2015)

2.4.1 Replicacéo de arquivos

O HDFS é projetado para armazenar arquivos grandes em um ambiente clusterizado
que pode ser escalavel a milhares de DataNodes. O DataNode armazena cada
arquivo como uma sequéncia de blocos, onde todos os blocos do arquivo, sdo
distribuidos entre os nds. Os blocos sdo entéo replicados para garantir tolerancia a
falha (Fig. 5). O tamanho do bloco, bem como a quantidade de replicacdes que o

arquivo recebe séo configuracdes que estéo presentes no NameNode.

O ndé mestre € quem toma todas as decisbes quanto a replicacdo dos blocos entre
os DataNodes. Periodicamente, cada DataNode do cluster envia ao NameNode um
Heartbeat e o relatério de blocos que estdo hospedados em seus discos. Com o
batimento cardiaco do servidor escravo, 0 NameNode tem a certeza de que este né
esta funcionado corretamente. Ja através do Blockreport, o DataNode envia a
confirmacédo de todos os blocos pertencentes a determinados arquivos, que estado
armazenados nele. (BORTHAKUR, 2015)

Namenode (Filename, numReplicas, block-ids, ...)
/usersfsameerp/data/part-0, r:2, {1,3}, ...
fusers/sameerp/data/part-1, -3, {2 4,5}, .

Datanodes

L E 1
B EH B =

E B E B

Figura 5 Replicac&o dos blocos.
Fonte: Borthakur, 2008.

27

2.4.2 Blocos de arquivo

Na arquitetura de armazenamento, existe um elemento chamado de tamanho de
bloco, este representa a menor quantidade de dados que pode-se ler ou escrever
em um determinado disco. Geralmente esse valor é 512 bytes nas solucfes mais
usuais, entretanto no HDFS esse valor passa a ser de 64 MB. Deste modo, reduz-se
0 custo de pesquisa no disco, também conhecido como Seek Time, otimizando a

leitura e escrita de arquivos muito grandes.

O HDFS divide os arquivos em blocos, por padrdo essa fatia tem 64 MB, todavia é
possivel aumentar este valor. Existem algumas aplicacdes que usam blocagem de
128 MB, facilitando o tratamento de grandes arquivos. (BORTHAKUR, 2015)

7

Outra caracteristica importante dos blocos em HDFS, é a replicacdo citada
anteriormente, que propicia tolerancia a falha e disponibilidade dos dados em caso
de alguma pane em um DataNode. Para assegurar a disponibilidade dos dados em
caso de corrupcao de blocos, falha em um disco ou falha em um servidor, cada
bloco é replicado 3 vezes. Assim, caso seja necessario ler um bloco corrompido, a
leitura pode ser feita por outro DataNode que recebeu a replicagdo destes dados.

2.4.3 Anatomia de leitura do HDFS

Para descrever como ocorre 0 processo de leitura de um arquivo no sistema de
arquivos HDFS, considere a Fig. 6, que mostra a sequéncia de eventos que compde

€SSe processo.

28

& get block locatians
MFS .,..................................
clisnt
namenode
dient VM
dlient node I
4 read 5 read
datanode datanode datanode

Figura 6 Processo de leitura em HDFS.
Fonte: White, 2012.
O cliente do HDFS envia a instrucdo de abertura para comunicar a requisicdo de
leitura de um determinado arquivo (passo 1). O sistema de arquivos distribuido
realiza uma chamada de procedimento remoto (RPC) ao NameNode que indica a
localizacdo dos blocos que compbem o arquivo (passo 2). Para cada bloco, o
servidor mestre retorna o endereco de cada DataNode que possui uma cépia do
bloco, além disso, 0os nds escravos sao organizados e escolhidos a servir a

requisicéo de acordo com a proximidade de rede com o cliente.

No passo seguinte (passo 3) o cliente fecha a comunicacao direta entre o DataNode
gue possui o primeiro bloco do arquivo, repetindo a comunicacao com os demais nés
gue armazenam 0s blocos restantes para leitura do arquivo (passos 4 e 5). Quando
os blocos estdo organizados e o cliente finaliza sua operacao de leitura, 0 mesmo

envia uma chamada de fechamento (passo 6). (WHITE, 2012)
2.4.4 Anatomia de escrita do HDFS

Para ilustrar como ocorre o processo de escrita de um arquivo no sistema de
arquivos HDFS, avalie a Fig. 7, que particulariza a sequéncia de eventos que

compde esse procedimento.

29

HDFS
dient

dlient JVM
dient node

4 4
Pipeline of Datahode Databode [Databode
datanodes a a

datanode datanode datanode

Figura 7 Processo de escrita em HDFS.
Fonte: White, 2012.

O cliente envia uma requisicao de criacao ao sistema de arquivos distribuido (passo
1). O sistema de arquivos distribuido realiza uma chamada de procedimento remoto
(RPC) ao NameNode solicitando a criacdo de um novo arguivo no namespace
(passo 2). O NameNode executa entdo uma varredura nos DataNode para garantir
gue o arquivo ndo existe e que nao possui blocos atrelados a ele. Com a certeza de
gue nao existe o arquivo duplicado no cluster, o cliente inicia a escrita do arquivo
que é fatiado em blocos, que séo distribuidos entre os DataNodes, os quais realizam
em paralelo a replicacéo dos blocos.

No momento que ocorre a distribuicdo dos blocos, os registros sdo armazenados
nos DataNodes (passo 4) e recebem entre si pacotes com 0 reconhecimento
daquela operacédo (passo 5). Quando o arquivo € armazenado por completo e o
cliente finaliza sua operagdo de escrita, 0 mesmo envia uma chamada de
fechamento (passo 6). (WHITE, 2012)

2.5 Trabalhos correlatos

Embasado no principio que o tempo de resposta em operacdes de leitura e escrita
esta diretamente relacionado ao tamanho do arquivo, Dong et al. (2014) traz

formulas matematicas que ilustram como essa relagcdo se comporta. Ao final, sdo

30

desenvolvidos modelos de desempenho dindmicos através das caracteristicas e
comportamentos de leitura e escrita presentes em ambientes HDFS, as quais foram
analisadas em conjunto com outras variaveis como tamanho de bloco e largura de
banda. Esse artigo embasa a proposta aqui apresentada, mostrando os detalhes da
estrutura do HDFS, para que seja possivel a partir de outros conhecimentos propor

uma solucéo para o problema dos arquivos pequenos.

Li, Lin e Wang (2013) abordam sobre o impacto que o armazenamento massivo de
arquivos pequenos causam ao ambiente Hadoop. De acordo com os autores, esse
framework foi baseado em um modelo feito pelo Google para armazenar grandes
arquivos, porém tem enfrentando alguns desafios, pois seu uso tem-se disseminado,
principalmente, em redes sociais, nas quais 0 uso de arquivos pequenos como fotos
e videos é muito comum. Plataformas que realizam grandes cargas de upload,
entretanto, sdo arquivos de baixa volumetria. Assim utilizam a técnica denominada
HMPI (Hadoop Multimedia Processing Interface), para processar com um bom nivel
de desempenho, volumes massivos de arquivos pequenos. ISso € possivel, pois
como ocorre com o HIPI (Hadoop Image Processing Interface), a arquitetura de
armazenamento concatena os arquivos em um pacote (bundle) e indexa os meta-
dados de videos e fotos, ao passo que as instrucfes de MapReduce aceleram o

processamento distribuido.

Ja Islam et al. (2015) propdem para melhorar a protecdo dos dados, a revisao de
como ocorre a replicacdo dos segmentos de bloco de dados, os quais sé&o
espalhados entre os nés do cluster Hadoop que, por sua vez, depende da rede de
comunicacao e do tipo da tecnologia do hardware de armazenamento presente para
obter desempenho. Para tal apresentam o Triplo-H (0 nome desta solu¢cdo vem da
combinagao de “Hybrid design of HDFS with Heterogeneous storage”), que prevé o
uso de tecnologia heterogéneas como RAM-Disk, SSD e HDD em clusters HPC
(High-Performance Computing). Através deste modelo, é possivel dividir em
camadas, orientadas ao desempenho e considerando o grau de importancia do dado
ao sistema, cada tipo de arquivo.

31

3 SOLUCAO PROPOSTA

Nesse capitulo apresenta-se opcOes de estruturacdo de armazenamento de um
Hadoop Distributed File System dado um cenario local, onde h& presenca massiva
de arquivos pequenos (menores que 64 MB). Serdo opcbes de boas préticas,
incluindo a organizacéo de diferentes tecnologias de persisténcia de dados, afim de
garantir desempenho na escrita e leitura dos dados e, por consequéncia

desempenho nas aplicacBes que utilizam esse sistema de arquivos distribuido.
3.1 Descricao do problema

Como citado, o HDFS foi desenvolvido para manipular arquivos grandes e, por esse
motivo raiz ndo tem bom desempenho com arquivos considerados pequenos.
Arquivos denominados pequenos sao todos aqueles que possuem volumetria menor
do que o bloco configurado no HDFS. Por padrdo, o tamanho do bloco no HDFS é
64 MB, porém esse valor pode ser alterado para indices superiores, de acordo com

a aplicacéo.

Existe uma grande variedade de motivos que possibilitam um cenério de enxurrada
de pequenos arquivos em HDFS. O primeiro deles esta na utilizacdo deste sistema
de arquivos para persistir milhares de arquivos, como fotos e pequenos videos que
séo copiados diretamente em HDFS sem modificagdes. Outro fator que potencializa
a criacdo de pequenos arquivos esta na utilizacdo do HDFS em aplicacdes do tipo
near real-time, onde ocorrem pequenas cargas de dados, por periodo.

A manipulacdo de arquivos pequenos atinge, principalmente, a utilizagdo de
memoria do NameNode. Cada bloco no Hadoop € representando por um objeto na
memoria do NameNode, o qual aloca 150 bytes. Deste modo, analisando a Fig 8,
caso tenha-se um arquivo menor que 1 MB, esse ira consumir da memoria do
NameNode a mesma quantidade que um arquivo de 64 MB, desperdicando assim,

recursos valiosos em um ambiente voltado a Big Data.

32

ARQUIVO < 1 MB ARQUIVO = 64 MB

[150 bytes [150 bytes [150 bytes [150 bytes 150 bytes [150 bytes [150 bytes |
Utilizacdo da memaria RAM do NameMode com arguive < 1 MB

[150 bytes| 150 bytes [150 bytes [150 bytes [150 bytes [150 bytes [150 bytes |
Utilizacdo da memdria RAM do MamelNode com arguive = 64 MB

BLOCO 64MEB BLOCO 64 MB

Figura 8 Consumo de memoéria RAM por objeto.

Fonte: Elaborada pelo autor

3.2 Tratativa do problema

bY

O ponto inicial que serd abortado nesse trabalho estd ligado a traducdo das
necessidades das aplicacdes que utilizam o HDFS. Na fase de definicdes, o
profissional responsavel pelo design da solugdo de armazenamento receberd,
inicialmente, a taxa esperada de vaz&o, nas operacdes de leitura e escrita do
sistema. O entendimento das variaveis que compdem um cenario HDFS é de
extrema importancia, pois muitos fatores influenciam diretamente no desempenho
deste sistema de arquivo distribuido. A varidvel central desta discussdo esta na

relacdo entre o tamanho do arquivo e as operacoes de leitura e escrita.

Apoiado em um modelo dindmico, o qual é abalizado na identificacdo do sistema
para estabelecer comportamentos de desempenho nas operacdoes de leitura e
escrita do HDFS. Essa analise permeia diferentes cenarios, para que seja validada a

eficacia desta abordagem.

Pontua-se que a taxa de transferéncia é a taxa de vazado meédia realizada nas
operacoes de leitura e escrita, TRd e TRw, respectivamente, cuja unidade
computacional é medida em MB/s (megabytes por segundo). Representadas pelas
equacdes 1 e 2: (DONG et al., 2014)

LWT‘ LT'
TRy, = m (1) TRyq = T_rz (2)

33

Onde L,, representa o tamanho do arquivo escrito, T,, representa o tempo
consumido pela operacdo. JA o L,; corresponde ao tamanho do arquivo lido,

enquanto o T,4; descreve o tempo consumido na instrucéo de leitura.

Sendo K o tamanho do arquivo, a equagédo 3 apresenta 0 tempo gasto para uma

operacéao de escrita no HDFS.

k k/PS
Twr(k) = Tcre + [B] (Tadb + Tred + Tplp) + Z[/]Tpacl + Tcpl (3)

Onde T,... € o tempo gasto pela criacdo do meta-dado no sistema de arquivos
namespace, presente no NameNode. T,,, representa o tempo gasto para replicagao
dos blocos, que por padrao divide-se em trés DataNodes. O tempo gasto para que o
NameNode receba a lista dos DataNodes utilizados é denominado T,..,;. O periodo
gasto pelo processo de comunicagdo do tipo socket do cliente HDFS com os
DataNodes recebe o valor T,;,. O tempo necessario pela fragmentacdo dos blocos,
bem como a persisténcia dos dados, aviso de conclusédo de operagao e verificagao
via checksum recebe o valor T, . Com o término da instrugédo de escrita, o tempo
necessario para finalizar a conexdo e verificar as réplicas € chamado de T,y

(DONG et al., 2014)

Deste modo, a taxa de transferéncia quando escreve-se um arquivo de tamanho k é
dado pela equacéo 4:
k

Teret [BS] (Tadb+Tred+Tp1p)+ i

TRy, (k) = k/PS] (4)

Tpaci +Tcpl
Onde BS é o tamanho do bloco e PS é o tamanho do pacote.

De forma semelhante a escrita, a equacao 5 representa o tempo para leitura de um

arquivo de tamanho K.

Trd(k) = [] (Tasl + Trel) + [] Tasb + Z[k/BS] Trebl (5)

BSx*pre

Onde T,; € o tempo gasto pela requisicdo do cliente, localizagdo dos blocos
repartidos pelos DataNodes, os quais sao ordenados pela distancia na topologia de

rede. T,.; representa o periodo gasto pelo NameNode para retornar a requisicdo de

34

localizac&o dos blocos. A cada bloco, o cliente envia uma requisicao de leitura para
o DataNode com menor distancia de rede, chamado de T,,. T., € O tempo gasto
para busca dos pacotes até a conclusdo da transferéncia do bloco para o cliente.
Por ultimo, pre representa a quantidade de blocos que cada instrucdo trata

paralelamente, por padréo, no HDFS séao tratados 10 blocos.

A taxa de transferéncia para a operacao de leitura de um arquivo de tamanho k é
dado pela equacéo 6: (DONG et al., 2014)

k
TRyq(k) = [k/BS] (6)

k k
[BS*pre]*(TaSl+ Tren+ [B_sl* Tasbt Xi—; Treb;

Uma vez que foram identificadas as variaveis presentes no ambiente HDFS, os
passos seguintes tém como principal objetivo, a reducdo do tempo gasto,

consequentemente, melhores taxas de vazao séo alcancadas.

Deste modo, o segundo ponto que sera tratado esta relacionado ao consumo de
processamento e memdria que arquivos de video e fotos realizam no cluster
Hadoop, em especial no HDFS. Os processos que o HDFS realiza em instrucdes de
leitura e escrita seguem o roteiro descrito no Capitulo 2, onde o NameNode é
responsavel por orquestrar todas as acdes, as quais sao armazenadas em memaoria

e sofrem penalidade quando se trata de arquivos pequenos.

Para exemplificar o consumo de memoéria de arquivos pequenos em HDFS, foram
utilizados 10 milhdes de arquivos do tipo imagem, armazenados como objetos, com
tamanho variando entre 1 KB e 200 KB. Esse acervo consumira 2 GB de memodria
de um NameNode, valor esse considerado alto tendo em vista que a mesma
guantidade de memdria poderia processar uma volumetria muito superior, porém em

arquivos grandes.

Pode-se utilizar do modelo de processamento HMPI (Hadoop Multimedia Processing
Interface) para melhorar o desempenho do HDFS para armazenar arquivos de
multimidia pequenos com eficiéncia. E através de uma interface Gnica entre o cliente
e o cluster Hadoop que as imagens e videos séo classificados automaticamente. A

seguir, esses arquivos pequenos se fundem e ocorre a criacdo de um novo arquivo,

35

no entanto, um arquivo grande com o tamanho do bloco configurado. Nesse cenario,
as midias possuem seus meta-dados armazenados em um arquivo do tipo indice,
atrelando a vantagem de processamento paralelo com uso do MapReduce, tornando
assim, melhor a experiéncia no acesso aos arquivos de imagens e videos. (LI; LIN;
WANG, 2013)

Nota-se na Fig. 9 que modelo HMPI é composto por trés principais camadas: uma
interface usuaria responsavel por unificar as requisicdes dos usuarios comuns,
atendendo as solicitagbes para carregar, baixar arquivos ou procurar arquivos que
estejam persistidos no repositério HDFS (passo 1); uma camada de processamento
do modelo HMPI a qual possui as funcbes de identificar o tipo e tamanho de
arquivos multimidia, distribuir a segmentacdo de video e fundir os arquivos (passo
2), bem como interagir com o cliente HDFS (passo 3); por ultimo, a camada do

HDFS persiste os arquivos gerados, frutos do HMPI, de forma eficiente (passo 4).

: HDFS
User Interface HMPI Business ProcessLayer

NameNode | Metadata_|

WebServer HDS Client {14 Vetadztaops

\
| Client !

\ r Block ops.

i | L)

Merging File L

—— Lreplication ——!

2 i blocks
‘—/

Datahode DataNede Datahode

Figura 9 Arquitetura do modelo HMPI em 3 camadas.
Fonte: Li, Lin e Wang, 2013.
A ideia principal para projetar o HMPI foi de facilitar a experiéncia do HDFS na
utilizacdo deste sistema de arquivos distribuido para manipular e armazenar
arquivos de imagens e videos, ao passo que a quantidade de memaria necessaria é

reduzida, pode-se processar mais informacdes a custos reduzidos de hardware.

36

Outra proposta para melhorar o desempenho no uso de grande quantidade de
arquivos pequenos aqui apresentada consiste no uso de tecnologias heterogéneas
de armazenamento para minimizar os gargalos que o HDFS possui em sua forma de
arquitetura padrao. Utiliza-se como base, os estudos realizados por Islam et al.
(2015) que promovem um modelo hibrido de persisténcia dos dados, através de

discos do tipo RAM-Disk, SSD e HDD, orientado ao desempenho e relevancia.

No cenario hibrido proposto, observa-se que as tecnologias de armazenamento
possuem caracteristicas distintas e o grande diferencial entre elas esta na largura de
banda maxima, ou em outras palavras, o quanto de vazao ela é capaz de garantir.
Na Fig. 10, é possivel observar os valores que diferenciam esses hardwares, entre

desempenho e capacidade.

Pico de vazao (MB/s) Capacidade (GB)

f— o 300
2000 Ll
1000 . 100
Q S— n —
S50
300

Pico de vazie (ME/s)
™
£
=
apacidade (GE

RAM Disk S50 HOD - RAM ik
mPico de vacka (WBjs) ETSE 2252 2ET u Capacidade [GE] 32

HDOD
600
Tecnologias Ternoloigas

Figura 10 Comparativo entre tecnologias.
Fonte: Adaptado de Islam et al., 2015
Por meio do modelo de arquitetura de armazenamento chamado de Triplo-H, os
gargalos de 1/0O s&o minimizados por acdes conhecidas como buffering e caching.
Em resumo, essas a¢les preveem a utilizacdo de memodria RAM ou dispositivos de
armazenamento que possuam desempenho préximo a memoria RAM, para persistir

os dados mais recentes ou aqueles que sdo mais acessados pelo ambiente.

A hierarquia de armazenamento, relacionada na Fig. 10 presente no modelo Triplo-

H, tém trés principais tipos de hardware:

¢ RAM-Disk que é um dispositivo baseado em memaria, mais rapido que os
discos SSDs em pelo menos 3x que suportam altas cargas de leitura e

escrita.

37

e Discos de estado solido, chamados de SSD, proporcionam
armazenamento com desempenho elevado e s&do essencialmente
adequados a aplicagbes em Big Data.

e Unidades de disco rigido, chamado de HDD, aprovisionam a maior
guantidade de armazenamento de dados, entretanto sao lentos em termos

de desempenho em comparacdo com as outras duas tecnologias citadas.

A proposta consiste em se empregar os dispositivos do tipo RAM-Disk como primeira
camada de buffer-cache, além de aproveitar os SSDs para aumentar a primeira
camada, eles serdo importantes para assegurar os dados em um cenério de falha,
visto que os discos do tipo RAM-Disk possuem sensibilidade a falta de fornecimento
elétrico. Por ultimo, serdo empregados os discos do tipo HDD, pois armazenar toda
a volumetria de um ambiente Big Data em discos rapidos seria muito caro e,

impossibilitaria 0 vasto uso desta solugéo. (ISLAM et al., 2015)

Os principais artefatos desta arquitetura hibrida de persisténcia de dados em HDFS
sao:

e Um seletor de politica junto ao cliente HDFS que atribui peso a diferentes
arquivos, conforme configuracao e necessidade do negdcio/aplicacao.

e Politicas de posicionamento de dados que determinam as regras para
utilizar de forma otimizada os diferentes tipos de armazenamento
disponiveis no cluster.

e Um mecanismo de posicionamento de dados escolhe o tipo do dispositivo
de armazenamento apropriado, baseado nos pesos gerados pelo cliente
HDFS, além de avaliar a disponibilidade da capacidade de
armazenamento necessaria, grava os dados no dispositivo determinado. E
também esse artefato responsavel por detectar dados que n&o séao criticos
e, por consequéncia, ndo necessitam de desempenho e devem ser

persistidos em discos do tipo HDD.

No processo que envolve as politicas de posicionamento, a arquitetura proposta é
subdivida em dois cenarios, os quais sao ilustrados na Fig. 11. A primeira forma é

chamada de Posicionamento Ganancioso (Greedy Placement) que consiste em

38

gravar todas as entradas na camada de armazenamento mais nobre, deste modo,
enguanto houver espaco no RAM-Disk ele é utilizado, passando a persistir o restante
dos dados nas outras tecnologias disponiveis. Em um cenério que exemplifica essa
forma, da-se um arquivo Fi que foi segmentado em dois blocos Bi1 e Bi2, onde i é a
identificacdo do arquivo. Desta maneira, 0os blocos pertencentes aos arquivos
hipotéticos Fi, F2, Fs e Fnirdo ocupar, inicialmente, os discos mais rapidos. Esse
método de posicionamento é indicado para ambientes onde o grau de importancia
do arquivo respeita, entre outras coisas, especialmente, a linha do tempo.

Bloco B;;.
i = arguivo RAM-Disk S5D HDD
j=bloco ID
Bll BLZ B."_l BE‘_E‘_ BBL Ej}‘_ Bﬂl Bﬂ BSi BSZ Bﬁl Bﬂ
Posicionamente Ganancioso (Greedy Placement)
B].]. B]_Z BZI BZI Bi]. Bi}‘_ B-ll Bﬂ BSI Bﬂ BE]. BEZ

Posicionamento por Balanceamento de Carga (Load-Balanced Placement)

Figura 11 Politicas de posicionamento.

Fonte: Adaptado de Islam et al., 2015
Ja na forma, conhecida como Posicionamento por Balanceamento de Carga (Load-
balanced Placement) todas as instrucdes sao pulverizadas entre os dispositivos
elencados através da classificacdo de peso do arquivo, que visa garantir que 0s
arquivos mais sensiveis ao desempenho estardo na tecnologia mais nobre. Deste
modo, os arquivos Fi, F2, F3 e Fn terdo seus blocos persistidos em dispositivos,
respeitando a classificacdo do peso dado a eles. Além de ser a forma mais indicada
para grande parte dos cenarios, onde o HDFS ¢ utilizado, € também a maneira que
traz o melhor aproveitamento das tecnologias presentes. No modelo Ganancioso,
todos os arquivos sdo armazenados, inicialmente, em dispositivos nobres e,

posteriormente, sdo rebaixados quando avaliada sua importancia. Contudo o

39

Posicionamento por Balanceamento de Carga otimiza essa classificacdo, evitando

problemas como armazenamento de réplicas em discos do tipo RAM-Disk.
3.3 Resultados obtidos

Os resultados obtidos empregando as propostas de concatenacdo dos arquivos
pequenos pelo modelo HMPI e a de utilizacdo de tecnologias heter6genas para

persisténcias dos dados em HDFS podem ser observados a seguir.

Os testes do modelo HMPI foram realizados por Li, Lin e Wang (2013) construindo
um cluster Hadoop utilizando-se de 5 computadores. Um nd atuando como
NameNode com um processador Intel Xeon E5606 CPU 2.13GHz, 8GB memoria e 1
TB disco HDD. Enquanto os DataNodes possuiam um processador Intel Core i3
CPU 2.93GHz, 4GB memoria e 500GB de disco HDD. Em cada n6, foi instalado o
sistema operacional CentOS Server 6.3 com kernel 2.6.32-279, Hadoop 1.0.3, Java

1.6.25, com trés replicacdes e bloco HDFS com tamanho de 64 MB.

Tendo ciéncia de que o numero grande de arquivos de midia afeta o desempenho
do HDFS, em especial a alocacdo de memoéria RAM, foram utilizados conjuntos de
arquivos que possuem 3000, 6000, 9000, 120000, 15000, 18000 e 21000 imagens.
Para o experimento com videos, foram utilizados 100 videos com 2 GB cada,

divididos em segmentos de 210 MB, compondo conjuntos de 200, 400, 600,
800 e 1000 segmentos.

Os resultados da administracdo de arquivos de imagens em relagdo ao HDFS

padrédo podem ser observados nas Figs. 12 e 13 a sequir:

40

Utilizacao de memadria por NameNode

250
200

150

MB

100
50

0
0 3000 6000 @ 9000 12000 15000 18000 | 21000

=@—HDFS Padrdo 8.6 25.12 4796 78.53 110.36 143.86 178.68 208.42
=@==HMPI 8.6 10.76 | 13.79 15.14 1456 1732 20.64 22.79

Figura 12 Uso de memoria do NameNode.

Fonte: Adaptado de Li, Lin e Wang, 2013.

Utilizacao de memaria por DataNode

160
140
120
100
80
60
40
20
0

MB

0 3000 | 6000 9000 12000 15000 18000 21000
=@ HDFS Padrdo 4.26 | 19.39 37.13 56.72 80.16 105.17 128.42 147.02
=@==HMPI 426 595 6.54 818 1147 1436 16.02 17.59

Figura 13 Uso de memoéria do DataNode.

Fonte: Adaptado de Li, Lin e Wang, 2013.
J4& em relagdo aos arquivos de video, ndo houve significativa melhora do
armazenamento de arquivos de video, bem como o uso de memoadria de NameNode,
visto que os arquivos de video geralmente possuem tamanhos superiores ao
tamanho do bloco padrdo, que é de 64 MB. Porém, o uso do HMPI fornece uma
interface Unica para armazenar e acessar arquivos de video, o qual garante a

vantagem de utilizar processos MapReduce do Hadoop para ler e processar

41

arquivos video, provendo diminuicdo no tempo de resposta, como € possivel ver a

seguir na Fig. 14.

Comparagao de consumo de tempo

12000

© 10000
S
£ 8000
2
2 6000
o
o
o 4000
o
5 2000
g
0
20 40 60 80 100
HDFS Padrio 1753 4036 5803 8227 11059
HMPI paravideo 516 1257 1681 3279 4106

Figura 14 Comparacéo de consumo de tempo.
Fonte: Adaptado de Li, Lin e Wang, 2013.
Conclui-se por meio das experiéncias de Li, Lin e Wang (2013) que o modelo HMPI
promove a diminuicao da utilizacdo de memadria do NameNode e dos DataNodes, ao
passo que 0s arquivos pequenos sdo tratados como arquivos maiores, por meio de
um processo de fusdo. O experimento ainda mostra como € possivel otimizar a
utilizacdo do HDFS para administrar a enxurrada de arquivos de midia oriundos de
redes sociais. Esse exemplo, coloca essa forma de organizacdo a frente das demais

solucdes de armazenamento.

Nos experimentos relacionados as tecnologias heterogéneas de armazenamento,
Islam et al. (2015) utilizaram trés clusters distintos para comprovar a eficacia do

modelo Triplo-H em relacdo ao HDFS padréo:

e Cluster A — O Intel Westmere Cluster € composto por 9 nds, cada né
possui processador Xeon Dual 4-core de 2.67 GHz, 24 GB de RAM, dois
discos HDD de 1 TB, um disco SSD de 300 GB além de 12 GB em RAM
Disk. O sistema operacional € o Red Hat Enterprise Linux Server 6.1.

e Cluster B — O SDSC Gordon é composto por 1024 nés de processamento

e 64 1/0 nés, cada compute node possui dois processadores 8-core 2.6

42

GHz Intel EM64T Xeon E5, 64 GB de RAM, 16 discos SSD de 300 GB e
32 GB em RAM Disk. O sistema operacional € o CentOS 6.4.

e Cluster C — Cada n6 do TACC Stampede possui 2 processadores 8-core
Intel Sandy Bridge de 2,70 GHz, 32 GB de RAM, um disco HDD de 80 GB
e outro RAM Disk de 16 GB. Foi escolhido o CentOS 6.3 como sistema

operacional.

Em todos os clusters a versdo do Hadoop instalado foi a versdo 2.6.0 com JDK
1.7.0. Nos testes realizados com os Clusters A e B foram utilizadas as tecnologias
de armazenamento RAM Disk, SSD e HDD. Entretanto, o Cluster C ndo possui
discos do tipo SSD e, por esse motivo ndo h4 uma camada intermediaria para a
persisténcia dos blocos oriundos do HDFS. Essa auséncia é valida para o estudo

agui apresentado, visto que pode-se encontrar esse tipo de limitacdo no dia-a-dia.

O primeiro experimento realizado foi através, do benchmark TestDFSIO, utilizado
largamente em teste de estresse do HDFS em operagdes de leitura e escrita. A Fig.
15 mostra os valores obtidos por meio do Cluster C, onde foram empregados 40 GB
de dados em 8 DataNodes, 80 GB em 16 DataNodes e 160 GB em 32 DataNodes.
Ainda na Fig. 15, pode-se comprovar que o modelo Triplo-H obteve desempenho 7
vezes maior do que o HDFS padrdo nas operacdes de escrita. Superioridade essa

garantida através da larga camada de buffer-cache.

Taxa de vazao média em escrita
40
30
20

10

8:40 16:80 32:160

Num. de Nés:Volumetria (GB)

Taxa média de vazdo (MB/s)

HDFS Padrdo HDFS com Triplo-H

Figura 15 Avaliagcdo do TestDFSIO no Cluster C em escrita.
Fonte: Adaptado de Islam et al., 2015.

43

Nas operacOes de leitura, o Triplo-H alcancou marcas 2 vezes melhores do que o
HDFS com configuracdo nativa, gracas a reducdo do numero de 1/0O. Os valores

obtidos estao apresentados na Fig. 16.

Taxa de vazao média em leitura

50
40
30
2
-l ol »
0

8:40 16:80 32:160

NUm. de Nés:Volumetria (GB)

o o

Taxa média de vazdo (MB/s)

M HDFS Padrdo m HDFS com Triplo-H

Figura 16 Avaliacdo do TestDFSIO no Cluster C em leitura.
Fonte: Adaptado de Islam et al., 2015.
Foram utilizados outras aplicagdes de benchmark, além do TestDFSIO para testar o
comportamento do Triplo-H em relacdo ao HDFS. Para criacdo de arquivos, foram

aplicados as ferramentas: TeraGen, RandomTextWriter, e RandomWriter.

O RandomTextWriter foi aplicado em 8 nés do Cluster A, onde o Triplo-H obteve
reducdo no tempo de execucdo em 48% no volume de 60 GB em relacdo ao HDFS

sem tecnologia heterogénea, conforme Fig. 17:

44

Tempo de execucao: RandomTextWriter

180
160
140
120

100
80
60
4
=
20 40 60

Volumetria (GB)

o

Tempo de execucdo (s)

o o

M HDFS Padrdo ®mHDFS com Triplo-H

Figura 17 Tempo de execug¢do do RandomTextWriter.
Fonte: Adaptado de Islam et al., 2015.

J& através da aplicacdo do TeraGen, em 32 nés do Cluster B, o desempenho do
ambiente Triplo-H foi superior em 42%, comparando com outro ambiente sem essa

proposta, de acordo com a Fig. 18.

Tempo de execucgao: TeraGen

160
140
120

100
80
6
4
2
0
140 160 1

Volumetria (GB)

o O

Tempo de execucdo (s)

o

80

B HDFS Padrdo EHDFS com Triplo-H

Figura 18 Tempo de execucédo do TeraGen.

Fonte: Adaptado de Islam et al., 2015.

45

Na Fig. 19, 32 nés do Cluster C foram utilizados nos testes com RandomWriter, onde
pode-se observar que houve reducdo do tempo de execucdo em 3 vezes, com O
Triplo-H.

Tempo de execug¢ao: RandomWriter

300
200

100

0] N N

8:30 16:60 32:120

Num. de nés:Volumetria (GB)

Tempo de execucgado (s)

H HDFS Padrdo m HDFS com Triplo-H

Figura 19 Tempo de execugdo do RandomWriter.

Fonte: Adaptado de Islam et al., 2015.
Por ultimo, foi evidenciada a diferenca de comportamento entre o modelo de
Posicionamento Ganancioso (Greedy Placement) e o Posicionamento por
Balanceamento de Carga (Load-balanced Placement). No comparativo, foram
realizadas operagdes de escrita de um volume de 30 GB em 4 nés dos Clusters A e
C, com 2, 4 e 8 execucbes de MapReduce simultaneas. Conforme Fig. 20, no
Cluster A, o modelo Ganancioso desempenhou melhor que o modelo por
Balanceamento de Carga em 2 execucgdes concorrentes. A partir de 4 execucgdes, 0
modelo que balanceia a carga obteve melhores resultados. J& 0 experimento com o
Cluster C (que né&o possui discos SSD), demonstrou que o modelo Ganancioso
trouxe taxas de vazao superiores em todas as execug¢des simultaneas, uma vez que
nesse cenario ndo ha a presenca de tecnologia intermediaria para persisténcia dos
blocos (Fig. 21).

46

Comparativo entre modelos de
posicionamento: Cluster A

2-simultaneas 4-simultaneas 8-simultaneas

250
200
150
100

50

Taxa média de vazdo (MB/s)

Execucdes simultaneas

M Pos. Ganancioso M Pos. Balanceamento de Carga

Figura 20 Resultados do TestDFSIO no Cluster A em escrita.
Fonte: Adaptado de Islam et al., 2015.

Comparativo entre modelos de

I posicionamento: Cluster C

o

= g0

o

‘T 60

©

>

o 40

©

©

N

€ o [|
g 2-simultaneas 4-simultaneas 8-simultaneas
'_

ExecucgGes simultaneas

M Pos. Ganancioso M Pos. Balanceamento de Carga

Figura 21 Resultados do TestDFSIO no Cluster C em escrita.

Fonte: Adaptado de Islam et al., 2015.

47

4 CONCLUSAO

A definicdo de uma arquitetura de armazenamento que garanta bom desempenho, é
premissa para o0 ciclo de vida de qualquer solucdo de armazenamento. As
dificuldades encontradas no ambiente selecionado, evidenciam que apesar de um
sistema de arquivos que foi desenvolvido para Big Data, € de extrema importancia
uma andlise profunda e continua do desempenho deste em diferentes formas de

utilizacao, garantindo assim, sobrevida e amplo emprego.

Inicialmente, o HDFS foi desenvolvido para manipulacdo de grande quantidade de
arquivos grandes, ou seja, que superem o tamanho da blocagem padréo. Entretanto,
a utilizacdo deste sistema de arquivos distribuidos tem se expandindo para o
armazenamento de dados advindos de redes sociais e aplicagbes do tipo near real-
time, como a Internet das Coisas (IoT), que geram enxurradas de arquivos
pequenos. A experiéncia do HDFS padrao, nesses cenarios, nao otimiza a utilizacéao

da memdria RAM do cluster Hadoop, que é sublocada.

Pode-se reforcar estas afirmacdes, por meio de equacbes matematicas, que
despontam que as taxas de transferéncia em um ambiente HDFS sofrem influéncia,
principalmente, pelo tamanho do arquivo, tamanho do bloco, velocidade do hardware
de armazenamento e desempenho da camada de rede de comunicagdo entre o

NameNode e os DataNodes.

Os estudos e resultados presentes neste trabalho, feitas a partir de trabalhos
prévios, de concatenacdo dos arquivos pequenos pelo modelo HMPI e a utilizacéo
de tecnologias heterdgenas para persisténcias dos dados, trazem ao HDFS maior

agilidade nas operacdes de escrita e leitura.

Para confirmar os beneficios das técnicas apresentadas, como trabalhos futuros,
anseia-se que as duas técnicas sejam empregas em paralelo em experimentos. Isto
permitiria observacdes, que poderiam enriquecer as equacdes matematicas, visto
que podem haver outros parametros que ndo foram abordados nos trabalhos
prévios. O experimento néo foi possivel de ser realizado durante o desenvolvimento

dessa monografia, pois criar um modelo que exponha todas as variaveis em um

48

cenario computacional, caracteriza uma acdo complexa e exige um tempo maior do

que o disponivel para o desenvolvimento do trabalho aqui apresentado.

49

5 REFERENCIAS BIBLIOGRAFICAS

AGARWAL, Arpit; RADIA, Sanjay; SRINIVAS, Suresh. Heterogeneous Storage for
HDFS. Forest Hill: The Apache Software Foundation, 2013. 11 p.

BORTHAKURR, Dhruba. HDFS Architecture Guide. Forest Hill: The Apache
Software Foundation, 2008. 13 p.

DONG, Bo et al. Performance models and dynamic characteristics analysis for
HDFS write and read operations: A systematic view. The Journal Of Systems And
Software. Xi‘an, p. 132-151. 19 fev. 2014.

GNANASUNDARAM, Somasundaram; SHRIVASTAVA, Alok (Ed.). Information
Storage and Management: Storing Managing and Protecting Digital Information in
Classic, Virtualized, and Cloud Environments. 2. ed. Indianapolis: John Wiley &
Sons, Inc, 2012. 530 p.

ISLAM, Nusrat Sharmin et al. Triple-H: A Hybrid Approach to Accelerate HDFS on
HPC Clusters with Heterogeneous Storage Architecture. Ohio: IEEE, 2015.

KLUG, Anthony; TSICHRITZIS, Dionysios C.The ANSI/X3/SPARC DBMS
Framework: Report of the Study Group on Database Management Systems. 2. ed.

New York: Computer Systems Research Group, 1975. 140 p.

LI, Jia; LIN, Kunhui; WANG, Jingjin. Design of the Mass Multimedia Files Storage
Architecture Based on Hadoop.Colombo: The 8th International Conference On
Computer Science & Education, 2013.

MICHAELIS (Brasil). Michaelis Dicionario Brasileiro da Lingua Portuguesa. Séo
Paulo: Editora Melhoramentos Ltda., 2016.

PRESTON, W. Curtis. Using SANs and NAS. Sebastopol: O'reilly & Associates, Inc,
2002. 66 p.

SNIA (Colorado Springs). Storage Networking Industry Association. 2016.

Disponivel em: <www.snia.org/>. Acesso em: 22 nov. 2016.

TAURION, Cezar. Big Data. Rio de Janeiro: Brasport Livros e Multimidia Ltda.,
2013. 102 p.

50

VENNER, Jason. Pro Hadoop: Build scalable, distributed applications in the cloud.
New York: Apress, 2009. 442 p.

WHITE, Tom. Hadoop: The Definitive Guide. 3. ed. Sebastopol: O'reilly Media Inc.,
2012. 657 p.

XUAN, Pengfei et al. Accelerating big data analytics on HPC clusters using two-level
storage. Parallel Computing, [s.l.], p.1-17, ago. 2016. Elsevier BV.
http://dx.doi.org/10.1016/j.parco.2016.08.001.

http://dx.doi.org/10.1016/j.parco.2016.08.001

