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RESUMO 

O HDFS foi concebido para manipular arquivos grandes.  Contudo, se observa que 

em cenários com grande volume de dados oriundos de redes sociais ou aplicações 

do tipo near real-time, normalmente, são geradas enxurradas de arquivos com 

tamanho menor que a blocagem padrão do HDFS.  Isso leva, a um uso não 

otimizado do HDFS.  Por outro lado, a literatura apresenta soluções que visam 

melhorar o desempenho desse sistema de arquivos. Entretanto, encontrar e 

selecionar soluções adequadas exige tempo, o que normalmente falta aos 

profissionais devido à grande carga de trabalho diário. Assim, para auxiliar os 

profissionais responsáveis em desenhar soluções de software e infraestrutura, essa 

monografia reúne, numa única fonte, informações necessárias que auxiliem o 

profissional a estruturar o HDFS de forma mais eficiente, com melhor desempenho 

nas operações de leitura e escrita. Os estudos, que foram base para a elaboração 

dessa monografia, melhoram o desempenho do HDFS em até 7x nas operações de 

escrita e duplicação em instruções de leitura. 

Palavras-chave: HDFS. Hadoop. Arquivos pequenos. Armazenamento Heterogêneo  
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ABSTRACT 

The HDFS has been designed to handle large files. However, if notes that in 

scenarios with large volume of data from social networks or applications of the near 

real-time type usually are storms generated files with size less than blocking standard 

of HDFS. This leads to a non-optimized use of HDFS. On the other hand, the 

literature presents solutions to improve the performance of this file system. However, 

find and select appropriate solutions requires time, which typically lack the 

professionals due to the large supply of daily work. Therefore, to help the 

professionals responsible to design software and infrastructure solutions, this 

monograph brings together in a single source information necessary to help the 

professional to structure the HDFS more effectively, with better performance in 

reading and writing. The studies, which were basis for this monograph, improve the 

performance of the HDFS by up to 7 x in write operations and duplicate in reading 

instructions. 

Keywords: HDFS. Hadoop. Small files.  Heterogeneous Storage  
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1 INTRODUÇÃO 

O início do planejamento de construção de um ambiente computadorizado necessita 

de uma arquitetura bem definida para se obter êxito.  A arquitetura pode ser 

compreendida como a forma que se dispõem as partes ou os elementos em um 

determinado cenário. Ainda assim, pode-se observar que a arquitetura relaciona 

normas, materiais e técnicas, especificações e formas de execução. 

Dentro do tempo necessário para a definição de uma arquitetura diversos pontos 

importantes devem ser analisados, cada cenário merece atenção às suas 

peculiaridades e limitações, pois não existe uma chave mestra, que solucione todas 

as necessidades.  

Os dados gerados por indivíduos ou por máquinas devem ser armazenados e 

recuperados de forma rápida e fácil. No âmbito da computação, as soluções de 

armazenamento precisam ser desenhadas para atender à estes requisitos. Os dados 

podem persistir em um cenário caseiro, por exemplo: em cartões de memória, CDs, 

DVDs e discos rígidos. Já no cenário corporativo, são diversas as formas que se 

pode encontrar para armazenar dados, como exemplos: soluções DAS (Direct-

Attached Storage), SAN (Storage-Area Network), NAS (Network-Attached Storage), 

fitas entre outras tecnologias.     

A transformação do modelo de arquitetura de armazenamento, tem-se dado pela 

descentralização dos equipamentos que mantém os dados acessíveis. 

Historicamente, os servidores usavam um desenho, tipicamente, interno de 

persistência. Com o tempo, esse modelo sofreu alterações e os dados passaram a 

não mais serem armazenados internamente, provendo a possibilidade de 

gerenciamento independente dos dados. (GNANASUNDARAM; SHRIVASTAVA, 

2012) 

A evolução dos meios de armazenamento está permitindo acompanhar o avanço do 

volume de dados gerados. Essa geração não apresenta comportamento linear, visto 

que 90% de todos dados de hoje foram criados somente nos últimos dois anos. O 

aumento da capacidade de processamento, em conjunto com o desenvolvimento de 

equipamentos periféricos portáteis, têm trazido um cenário favorável à Internet das 
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Coisas. Esse conjunto de tecnologias que conecta uma infinidade de itens, gera 

dados a todo instante e se torna um importante impulsionador para Big Data.  

A primeira fase de um processo Big Data está na coleta dos dados. Uma vez que 

esses dados são coletados, eles precisam ser armazenados em uma determinada 

área local, chamado de modelo on-premise, para se extrair informações. (TAURION, 

2013).  No contexto de tecnologias Big Data, o framework Hadoop foi concebido 

para processamento distribuído dos dados.  O HDFS (Hadoop Distributed File 

System) é o sistema de arquivo que dá suporte ao Hadoop para o armazenamento 

distribuído, performático, capaz de guardar volumetrias significativamente grandes. 

1.1 Motivação e Justificativa 

Este trabalho iniciou-se a partir da observação do cotidiano dos arquitetos de 

soluções de armazenamento, que com a crescente avalanche de dados oriundos do 

cenário de Big Data, têm encontrado dificuldades para prover desempenho 

necessário ao negócio.  

O estudo foi então embasado na avaliação dos problemas encontrados para 

realização de armazenamento de dados provenientes de utilitários do Hadoop. 

Observou-se que o HDFS foi projetado, inicialmente, para ser utilizado com arquivos 

grandes (maiores que 64 MB), entretanto, têm-se notado que na verdade são os 

pequenos arquivos (menores que 64 MB) os quais estão sendo mais persistidos e 

que de certa forma prejudicam o desempenho das aplicações. 

A resultante de um design de armazenamento eficaz é peça fundamental para obter 

êxito na aplicação. Alguns itens são essenciais nessa fase e devem ser levados em 

consideração: 

 Tempo de resposta desejado pela aplicação; 

 Área necessária para atender o volume inicial e crescimento esperado; 

 Nível de proteção dos dados (integridade dos dados); 

 Forma de acesso ao repositório; 

A busca por tecnologias com melhor desempenho, aliadas à economia, tem levado a 

forma como os dados são armazenados sofrerem mudanças. Nesse cenário de 
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transformação, a utilização do HDFS para persistir os dados, principalmente, em 

ambientes com grande quantidade dados, tem sido a forma mais escolhida. 

Acolhendo a essa tendência e notando a dificuldade encontrada por profissionais da 

área de arquitetura, pretende-se gerar estudos que possam servir como um guia 

para resolução dos problemas encontrados no HDFS com arquivos pequenos e as 

limitações do modelo de armazenamento.  

1.2 Objetivo 

O objetivo deste trabalho é apresentar soluções de concatenação dos arquivos e 

armazenamento heterogêneo encontradas na literatura para melhorar e eficiência 

nas operações de leitura e escrita no HDFS, considerando uma carga massiva de 

arquivos pequenos.   

1.3 Contribuição 

Como contribuição busca-se apresentar num único material informações 

encontradas em diferentes pesquisas que apresentam soluções para melhoria do 

desempenho do HDFS com quantidade massiva de arquivos de tamanho reduzido 

(menores que 64 MB). O trabalho ainda poderá servir à outras pesquisas 

relacionadas ao armazenamento em sistemas de arquivos distribuídos. 

1.4 Metodologia 

O trabalho iniciou-se com a observação da dificuldade encontrada por arquitetos e 

outros profissionais de TI, em desenhar estruturas destinadas ao HDFS que 

possuam bom desempenho com arquivos pequenos. Deste modo, com a 

necessidade de trazer melhorias aos processos e desempenho no armazenamento 

de arquivos menores que a blocagem padrão do HDFS, foram realizadas pesquisas 

bibliográficas no anseio de buscar soluções que trouxessem uma forma possível de 

desenhar esse ambiente. Na pesquisa estão contidos elementos de artigos que 

auxiliam na  

Após a identificação deste problema, foi iniciada a busca bibliográfica por soluções 

através de livros, fóruns e artigos técnicos relacionados à arquitetura de 
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armazenamento que abortassem essa deficiência. Entretanto, não foram 

encontrados materiais que unissem soluções completas, fim-a-fim, para manipulação 

de arquivos pequenos, aliadas à persistência inteligente dos blocos. 

Foi encontrado entre os artigos elencados, um conjunto de soluções que propiciam 

ao HDFS desempenho para atender às necessidades de ambientes Big Data, com 

essas características. As propostas foram alinhadas, ao passo que o resultado deste 

trabalho foi um guia, que parte do entendimento da necessidade do negócio, ou 

seja, o throughput esperado pelo sistema/aplicação, chegando à adequação da 

manipulação e persistência dos arquivos, empregando técnicas recomendadas pelas 

referências elegidas. 

1.5 Estruturação 

Este trabalho foi divido da seguinte forma: no Capítulo 2 têm-se os preceitos teóricos 

desta monografia, que abordam a arquitetura de armazenamento, o sistema de 

arquivos distribuídos do framework Hadoop e sua utilização em cenários de grande 

volume de dados. Estão também presentes nessa seção, os trabalhos correlatos que 

nortearam o desenvolvimento desta monografia. 

No Capítulo 3, apresenta-se o desenvolvimento do trabalho proposto, através de 

exemplos de soluções de armazenamento e técnicas usadas para melhoria do 

desempenho que estão surgindo para aperfeiçoar a experiência com Big Data. 

Finalmente, no Capítulo 4, têm-se as considerações finais, a conclusão e propostas 

aos trabalhos futuros.  
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2 FUNDAMENTAÇÃO TEÓRICA 

Nesse capítulo aborda-se a base conceitual necessária ao desenvolvimento deste 

trabalho. Na seção 2.1 estão as definições iniciais de arquitetura, na seção 2.2 está 

a evolução da arquitetura de armazenamento e tecnologias utilizadas atualmente, na 

seção 2.3 está o framework Hadoop e seus principais aplicativos. Ao final, na seção 

2.4 está o detalhamento do HDFS. 

2.1 Arquitetura 

De acordo com Michaelis (2016) arquitetura pode ser entendida como a forma que 

se dispõem as partes ou os elementos dado um cenário. Deste modo, pode-se 

observar que a arquitetura relaciona normas, materiais e técnicas, especificações e 

formas de execução. 

No âmbito computacional, focado em dados, a arquitetura de armazenamento 

descreve como os dados são processados, persistidos e servem ao negócio, em 

geral. Ainda especifica os critérios para as operações de processamento de dados, 

deste modo, é possível controlar o fluxo das informações. 

A responsabilidade do arquiteto nesse segmento, é garantir que os dados serão 

acessados pelas aplicações com eficiência, por meio de especificações acertadas de 

acordo com a necessidade do negócio. A melhoria dos resultados acompanha todo 

o processo, o trabalho de agregar melhores rendimentos aos equipamentos de 

armazenamento estão no dia-a-dia deste profissional. Todas essas ações são 

realizadas usando-se da divisão da arquitetura em: conceitual, físico e lógico. 

2.1.1 Arquitetura Conceitual de Dados 

Essa forma de arquitetura tem como objetivo confeccionar um modelo conceitual de 

armazenamento dos dados. Traz uma visão de alto nível do ambiente, o qual dá 

assistência às necessidades do negócio de uma organização, norteando as 

decisões sobre as tecnologia dispostas. Nesse modelo, o destaque é para relações 

de negócio da empresa como um todo, descartando-se assim, inicialmente, 
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limitações tecnológicas, pois estas serão tratadas nas próximas formas, mais 

amadurecidas nesse aspecto. (KLUG; TSICHRITZIS, 1975) 

2.1.2 Arquitetura Lógica de Dados 

Na arquitetura lógica de dados, são descritos com detalhes as propriedades e os 

relacionamentos de cada um dos grupos de dados relacionados ao negócio. Nessa 

forma de arquitetura, têm-se como produto: estruturas normatizadas, relacionamento 

entre os dados, além de um modelo organizacional de gerenciamento. (KLUG; 

TSICHRITZIS, 1975)    

2.1.3 Arquitetura Física de Dados 

A arquitetura física de dados está diretamente ligada ao meio físico que os dados 

serão persistidos, concentrando as atenções na composição de elementos reais e 

tangíveis a serem utilizados. É nessa fase que são definidas no detalhe as 

especificações técnicas e tecnologias responsáveis pelo correto funcionamento das 

aplicações e, por consequência, suporte necessário ao negócio.  (KLUG; 

TSICHRITZIS, 1975) 

2.2 Evolução da arquitetura de armazenamento 

A evolução da arquitetura de armazenamento, está na descentralização do modelo 

de acesso aos dados. Historicamente, os servidores usavam um modelo conhecido 

como DAS (Direct Attached Storage), método local de se conectar aos dispositivos 

de armazenamento. Na arquitetura direta de acesso, cada servidor possui um 

número restrito de dispositivos exclusivos e as tarefas administrativas, como 

manutenções ou crescimento de capacidade, ocasionavam indisponibilidade das 

informações. (GNANASUNDARAM; SHRIVASTAVA, 2012) 

Todavia a necessidade por gerenciar os dados de forma não exclusiva pelo servidor 

hospedeiro, fez este cenário centralizado no servidor (Server-Centric Fig.1) ser 

substituído por outro modelo centrado em informações (Information-Centric Fig. 2).  
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Figura 1 Modelo centralizado no servidor 

Fonte: Gnanasundaram e Shrivastava, 2012. 

 

 

Figura 2 Modelo centralizado na informação

. Fonte: Gnanasundaram e Shrivastava, 2012 

Através desta mudança, o modelo sofreu alterações e os dados passaram a não 

mais serem armazenados internamente, possibilitando através de uma rede de 

armazenamento, acesso por diversos servidores ao mesmo tempo. Além disso, a 

evolução da arquitetura de armazenamento trouxe o gerenciamento independente 

dos dados, deste modo, as atividades como: crescimento de capacidade de 

armazenamento, manutenções em servidores e migrações de ambientes, passaram 

a não mais interromper as aplicações, protegendo os negócios da instituição.  

(GNANASUNDARAM; SHRIVASTAVA, 2012) 

2.2.1 Tecnologias de Armazenamento 

As tecnologias de armazenamento de dados são nomeadas de acordo com as 

formas pelas quais são conectados os dispositivos de armazenamento de dados aos 

sistemas computacionais e pelo tipo de informação que é trocada entre eles. As 

principais tecnologias de armazenamento existentes são DAS (Direct Attached 

Storage), NAS (Network Attached Storage) e SAN (Storage Area Network). Como 

indicado anteriormente, o modelo DAS tem o acesso através de um barramento local 

ou outro meio físico aos dispositivos de armazenamento. Já o modelo NAS permite 

acesso através de redes LAN e WAN por meio de protocolos como NFS (Network 

File System), SMB (Server Message Block) e CIFS (Common Internet File System). 

Por último, o modelo SAN que provê uma rede dedicada de transferência de dados 
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em baixo nível, similar às instruções internas em discos, como SCSI. 

(GNANASUNDARAM; SHRIVASTAVA, 2012) 

Para dividir as tecnologias de armazenamento de dados, será utilizado o modelo 

desenvolvido pela SNIA. Criada em 1997, a SNIA (Storage Network Industry 

Association) é uma organização global sem fins lucrativos, constituída por empresas 

associadas, abrangendo o mercado global de armazenamento de dados, cuja 

missão é liderar a indústria de armazenamento mundial no desenvolvimento e 

promoção de padrões, tecnologias e serviços educacionais para capacitar as 

organizações na gestão da informação. (SNIA, 2016) 

Através do modelo criado pela SNIA (Fig. 3), o qual é chamado de Modelo de 

Armazenamento Compartilhado de Dados (Shared Storage Model), pode-se 

apresentar uma estrutura genérica para arquitetura de armazenamento de dados 

compartilhados, relacionando os serviços com as formas de acesso aos dados. Por 

meio deste modelo, se torna viável mapear o cenário presente de armazenamento 

de dados para as soluções propostas, ajuda a esclarecer o que as tecnologias estão 

endereçando e também cria uma base de conhecimento para atender futuras 

necessidades da aplicação. 

  

Figura 3 Modelo SNIA de armazenamento de dados compartilhado. 

Fonte: SNIA, 2016. 
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Ao analisar a Fig. 3, percebe-se que o modelo proposto pela SNIA estabelece uma 

aliança entre a aplicação, que é executada no âmbito computacional, ou seja, nos 

servidores e o domínio de armazenamento de dados. Nesse modelo de arquitetura 

de dados, pode-se subdividir o domínio de armazenamento em duas camadas:  

 Camada de Arquivo/Registro (File/ Record Layer) - é a interface entre o 

nível mais alto de aplicações e os recursos de armazenamento, representada 

pela sequência de bytes de informações que formam registros ou arquivos.  

 Camada de Blocos (Block Layer)  - é a faixa de baixo nível do 

armazenamento onde os blocos de dados são persistidos ou lidos no 

hardware, comumente chamado de Storage. 

Através do Modelo de Armazenamento Compartilhado de Dados, proposto pela 

SNIA, pode-se tratar das diferentes formas de armazenamento, listando as principais 

características das tecnologias DAS, NAS e SAN.  

2.2.1.1 Direct Attached Storage (DAS) 

A tecnologia de armazenamento compreendia como DAS, é a forma de persistir os 

dados mais simples, pela ausência de uma rede de comunicação entre o servidor e 

o periférico de armazenamento, os discos são internos ou estão em um gabinete 

conectado diretamente ao servidor que faz a gerência dos dados. A comunicação 

nesse modelo de arquitetura é feita, usualmente, pela tecnologia SCSI (Small 

Computer System Interface) paralelo. (GNANASUNDARAM; SHRIVASTAVA, 2012) 

Nesse modelo de entrega de volumetria, o canal de comunicação físico possui 

limitações restritas de distância e dificuldade para entregar alta carga de dados. 

Além disso, outro fator que restringe o uso deste modelo em cenários empresariais, 

é a limitação da quantidade de discos e indisponibilidade em caso de manutenção. 

DAS requer um investimento inicial muito inferior se comparado à outras tecnologias 

como SAN, por exemplo. Tornando-se uma arquitetura fácil e rápida de ser 

implantada, onde a configuração e gerenciamento dos blocos são realizados pelo 

sistema operacional do servidor.  (GNANASUNDARAM; SHRIVASTAVA, 2012) 
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2.2.1.2 Network Attached Storage (NAS) 

Network Attached Storage provê o compartilhamento de arquivos de forma flexível, 

por meio de uma rede de comunicação não exclusiva à Storage que une os 

servidores clientes aos dispositivos de armazenamento, permitindo alcançar longas 

distancias, com massiva quantidade de usuários, benefício de altas velocidades de 

transmissão, alta disponibilidade e consolidação de armazenamento. (PRESTON, 

2002) 

A essência do modelo de arquitetura NAS, segundo as definições da SNIA, está em 

dispositivos ligados à redes LAN (Local Area Network) e/ou WAN (Wide Area 

Network) que trafegam os arquivos através de protocolos de compartilhamento de 

arquivos na rede. No cenário atual, os principais protocolos de compartilhamento de 

arquivos são CIFS/SMB e NFS, destinados aos sistemas operacionais Microsoft 

Windows e Unix/Linux, respectivamente. 

Os equipamentos de armazenamentos chamados de NAS usam seu próprio sistema 

operacional, hardware integrado e componentes de software para atender às 

necessidades específicas e executar de forma otimizada o compartilhamento de 

arquivos. Seu sistema operacional é desenvolvido para instruções I/O de arquivo e, 

portanto, executa estas instruções de máquina melhor do que um servidor ou PC 

(Personal Computer) de uso geral. Como resultado, um dispositivo NAS pode servir 

a mais clientes do que servidores de uso geral, aprovisionando consolidação de 

armazenamento e melhor tempo de resposta. (GNANASUNDARAM; 

SHRIVASTAVA, 2012) 

2.2.1.3 Storage Area Network (SAN) 

A arquitetura de armazenamento conhecida como SAN é de modo geral um modelo 

composto por uma rede dedicada ao tráfego de dados, geralmente, a nível de bloco 

que permite que diversos servidores tenham acesso à volumetrias externas de modo 

rápido, com alta disponibilidade e segurança. A entidade de armazenamento que 

está disponível externamente não é limitada em espaço como em uma arquitetura 

DAS, onde o dispositivo é interno e por essa razão nesse modelo são mais fáceis de 

manusear quando necessário e trazem facilidades para o compartilhamento por 
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vários servidores. Em um cenário SAN, o dispositivo central é o equipamento 

responsável pela gerência e disponibilização do dados, o qual é comumente 

chamado de Storage. Através da figura do Storage, ocorre a centralização das 

operações de armazenamento e o gerenciamento dos dados passa a ser tarefa não 

mais exclusiva do servidor. São essas as razões principais pela popularização e 

utilização em grande escala das grandes empresas pelo modelo SAN. 

(GNANASUNDARAM; SHRIVASTAVA, 2012) 

A idealização do modelo SAN iniciou-se com a necessidade de agrupar uma 

quantidade elevada de discos, afim de atender à crescente necessidade por 

volumetria ao passo que a proteção das informações também ganhava importância, 

através da organização dos discos em RAID (Redundant Array of Independent 

Disks).  Outro fator que impulsionou o surgimento desta arquitetura foi o 

desenvolvimento do padrão FC (Fibre Channel), que é um protocolo de transferência 

de dados por meio de fibra ótica, que propicia a transmissão em altas velocidades 

como 16 Gb/s ou superior. (SNIA, 2016) 

Segundo a definição proposta pela SNIA sobre SAN, qualquer tipo de rede dedicada 

ao uso de armazenamento pode ser usada, no entanto, atualmente, as redes 

baseadas em Fibre Channel e Gigabit Ethernet são a mais comuns. Nesse cenário 

aparecem as redes mais utilizadas: FCP (Fibre Channel Protocol), FCIP (Fibre 

Channel over TCP/IP) e ISCSI (Internet Small Computer System Interface). 

No cenário atual, os dados das empresas são os seus ativos mais valiosos e, Big 

Data aumenta as exigências das tecnologias de armazenamento presentes, com sua 

forma exponencial de crescimento de dados estruturados e não-estruturados, além 

da necessidade por tempos de resposta cada vez menores, essências a 

determinadas áreas de negócios. (TAURION, 2013) É sobre esse panorama que 

surge o framework Hadoop para proporcionar maior capacidade de processamento e 

inteligência em armazenamento distribuído.  
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2.3 Framework Hadoop 

Criado por Doug Cutting, o Hadoop foi originado a partir do Apache Nutch, uma 

solução open source de pesquisas na web, o qual fazia parte do projeto Apache 

Lucene, uma biblioteca de pesquisas, amplamente, utilizado. (WHITE, 2012)    

O projeto Nutch teve início em 2002, sendo utilizado como uma ferramenta de 

pesquisa rápida e rastreador web (web crawler). Entretanto, foi percebido que essa 

arquitetura não seria capaz de crescer à escala de bilhões de páginas. Em 2003, por 

meio da publicação de um artigo a Google apresentou a arquitetura do Google’s 

Distributed File System, chamado de GFS e, utilizado no ambiente produtivo desta 

empresa. Nessa publicação, estavam as principais soluções dos problemas 

encontrados pelo projeto Nutch com a gerência de armazenamento de arquivos 

grandes. Em 2004, o Google apresentou ao mundo o MapReduce. Já entre os anos 

de 2005 e 2006 e, com a chegada de Doug Cutting ao Yahoo, o projeto passou a ser 

chamado de Hadoop. (WHITE, 2012)  

De acordo com a organização Apache, o Hadoop é um framework que permite o 

processamento distribuído de larga escala de dados através de computação 

clusterizada, usando modelos simplificados de programação que podem ser 

escalonados à milhares de servidores. 

Na versão abordada (2.x), o framework Hadoop é composto pelos módulos: 

 Hadoop Commom - o núcleo da estrutura, pois fornece serviços essenciais e 

processos básicos, como a abstração do sistema operacional subjacente e 

seu sistema de arquivos. O Hadoop Common também contém os arquivos 

JAR (Java Archive) necessários, os scripts para iniciar o Hadoop, código-

fonte, documentações, além de uma sessão dedicada a contribuição de 

outros subprojetos do Hadoop.  

 Hadoop Yarn - uma ferramenta responsável pelo gerenciamento dos 

recursos computacionais em cluster e agendamento destes recursos. Na 

estrutura do Yarn possui um Gerenciador de Recursos (Resource Manager) 

global e um Mestre por aplicação (Application Master).  O Gerenciador de 

Recursos e o Gerenciador do Nó (Node Manager) constituem a estrutura 
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computacional. O Gerenciador de Recursos é a autoridade final que arbitra 

recursos entre todas as aplicações no sistema. Já o Gerenciador do Nó é 

responsável pela estrutura por máquina e monitora o uso de recursos como 

CPU, memória, utilização em disco e utilização de rede, narrando os ao 

Gerenciador de Recursos. A figura do Gerenciador de Aplicações tem a 

função de orquestrar as tarefas submetidas, negociar o contêiner para 

executar um determinado aplicativo e prover os serviços necessários para 

reiniciar um Mestre em caso de um contêiner apresentar falha. 

 Hadoop MapReduce – é um modelo computacional distribuído, que utiliza-se 

de funções oriundas da programação funcional. O ambiente compreendido 

por MapReduce provê aos usuários uma experiência sofisticada na gerência 

de mapeamento e redução em tarefas de um cluster Hadoop. (VENNER, 

2009) O fluxo das operações desta solução inicia-se com a leitura de uma 

entrada, onde o leitor divide os dados em blocos para a próxima fase. Na 

função de mapeamento, os blocos obtidos através do leitor recebem uma ou 

mais combinações de chave e valor. Com o resultado da função de 

mapeamento um redutor é designado a efetuar a partição, deste modo nesta 

fase ocorre a distribuição da carga de processamento entre os nós. Após a 

tarefa de map concluída, o resultado é comparado com o valores definidos e 

direcionado à função reduce, que resume os itens encontrados gerando uma 

única saída ou somatório de ocorrências que serão persistidos em um 

sistema de armazenamento, como o HDFS, por exemplo. 

 Hadoop Distributed File System (HDFS) – um sistema de arquivos 

distribuído adotado pelo framework Hadoop para persistir grande quantidade 

de dados, de forma rápida, segura e escalável a milhares de nós. Através 

deste sistema é possível conectar servidores comuns, conhecidos na 

estrutura do HDFS como nós, contidos em clusters onde os blocos de dados 

são distribuídos e assegurados por meio de replicações. Deste modo, ocorre 

o acesso e armazenamento dos blocos de dados como um sistema de 

arquivos contínuo que usa o modelo de processamento MapReduce. Esta 

solução de armazenamento assemelha-se as demais formas de 
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compartilhamento de arquivos já presentes no mercado, porém suporta 

algumas diferenças importantes, uma destas está na arquitetura de leitura e 

escrita, pois o HDFS utiliza o modelo WORM (Write-Once-Read-Many) que 

facilita as requisições do domínio de simultaneidade, simplifica a persistência 

de dados e possibilita o acesso de alto rendimento aos sistemas de arquivos 

2.4 HDFS 

Como o foco deste trabalho está na arquitetura do Hadoop Distributed File System 

aplicada à ambientes locais (leia-se on-premise), nessa seção é apresentada uma 

descrição mais detalha deste subprojeto da Apache Software Foundation e solução 

padrão de persistência de dados do Hadoop. 

Criado a partir da necessidade de atender às exigências de volumes de dados que 

tendem ao crescimento exponencial, na ordem de terabytes e petabytes, o HDFS 

aparece como uma solução de persistência de dados em Big Data, pelas principais 

características de: 

 Proteção contra falhas pela detecção de erros e aplicação de recuperação 

rápida e automática; 

 Acesso aos dados através do fluxo Hadoop MapReduce; 

 Modelo de distribuição de arquivos simultâneos simples e robusto; 

 Lógica de processamento orientada aos dados; 

 Exemplo de sistema do tipo POSIX (Portable Operating System Interface) que 

garante a portabilidade entre sistemas operacionais e hardware 

heterogêneos; 

 Escalabilidade para registrar e tratar de modo confiável larga quantidade de 

dados 

 Redução dos gastos com CAPEX (Capital Expenditure) por ser uma solução 

econômica;  

 Eficácia na distribuição de dados e processamento em paralelo que ocorre 

nos nós em que os dados estão armazenados; 
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 Segurança e confiabilidade pela replicação automática de várias cópias dos 

dados em um cenário à prova de falhas. 

O HDFS possui uma arquitetura do tipo mestre/escravo. Em um cluster HDFS têm-

se um único NameNode, responsável pela gerência do sistema de arquivo que tem a 

figura de mestre sobre os nós do tipo escravo, chamados de DataNodes. O 

NameNode ainda executa operações de namespace do sistema de arquivo como 

abertura, fechamento e renomeação de arquivos e diretórios, além de determina o 

mapeamento dos blocos entre os DataNodes. Já a figura do DataNode é 

responsável por garantir a leitura e escrita das solicitações dos clientes, ainda assim, 

tem a ação de criação de blocos de dados, bem como a exclusão destes duplicados 

no nó.  A seguir, pode-se ver na Fig. 4 como são distribuídos esses elementos. 

(BORTHAKUR, 2015) 

 

Figura 4 Arquitetura do HDFS. 

Fonte: Borthakur, 2008. 

Os elementos desta arquitetura, o NameNode e DataNode são figuras de software 

projetadas para rodar em hardwares de commodities. Estes servidores geralmente 

executam sistemas operacionais oriundos de distribuições Linux. HDFS é construído 

usando a linguagem Java, qualquer servidor que possua suporte à Java pode 

realizar o papel de NameNode ou DataNode. Através da linguagem Java, que é 

altamente portátil, o HDFS pode ser implantado em uma ampla faixa de máquinas. 

Faz parte da figura do NameNode a responsabilidade por manter o namespace do 

sistema de arquivo. Qualquer alteração no namespace ou nas propriedades do 
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sistema de arquivo, estas são registradas pelo NameNode. Nas configurações 

presentes no NameNode, estão também as opções de segurança, onde um 

aplicativo pode especificar o número de réplicas de um arquivo que deve ser 

mantido pelo HDFS. O número de cópias de um arquivo, nessa estrutura é chamado 

de fator de replicação de arquivo. (BORTHAKUR, 2015) 

2.4.1 Replicação de arquivos 

O HDFS é projetado para armazenar arquivos grandes em um ambiente clusterizado 

que pode ser escalável a milhares de DataNodes. O DataNode armazena cada 

arquivo como uma sequência de blocos, onde todos os blocos do arquivo, são 

distribuídos entre os nós. Os blocos são então replicados para garantir tolerância à 

falha (Fig. 5). O tamanho do bloco, bem como a quantidade de replicações que o 

arquivo recebe são configurações que estão presentes no NameNode.   

O nó mestre é quem toma todas as decisões quanto à replicação dos blocos entre 

os DataNodes. Periodicamente, cada DataNode do cluster envia ao NameNode um 

Heartbeat e o relatório de blocos que estão hospedados em seus discos. Com o 

batimento cardíaco do servidor escravo, o NameNode tem a certeza de que este nó 

está funcionado corretamente. Já através do Blockreport, o DataNode envia a 

confirmação de todos os blocos pertencentes a determinados arquivos, que estão 

armazenados nele. (BORTHAKUR, 2015) 

 

Figura 5 Replicação dos blocos. 

Fonte: Borthakur, 2008. 
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2.4.2 Blocos de arquivo 

Na arquitetura de armazenamento, existe um elemento chamado de tamanho de 

bloco, este representa a menor quantidade de dados que pode-se ler ou escrever 

em um determinado disco. Geralmente esse valor é 512 bytes nas soluções mais 

usuais, entretanto no HDFS esse valor passa a ser de 64 MB. Deste modo, reduz-se 

o custo de pesquisa no disco, também conhecido como Seek Time, otimizando a 

leitura e escrita de arquivos muito grandes.    

O HDFS divide os arquivos em blocos, por padrão essa fatia tem 64 MB, todavia é 

possível aumentar este valor. Existem algumas aplicações que usam blocagem de 

128 MB, facilitando o tratamento de grandes arquivos. (BORTHAKUR, 2015) 

Outra característica importante dos blocos em HDFS, é a replicação citada 

anteriormente, que propicia tolerância à falha e disponibilidade dos dados em caso 

de alguma pane em um DataNode. Para assegurar a disponibilidade dos dados em 

caso de corrupção de blocos, falha em um disco ou falha em um servidor, cada 

bloco é replicado 3 vezes. Assim, caso seja necessário ler um bloco corrompido, a 

leitura pode ser feita por outro DataNode que recebeu a replicação destes dados. 

2.4.3 Anatomia de leitura do HDFS 

Para descrever como ocorre o processo de leitura de um arquivo no sistema de 

arquivos HDFS, considere a Fig. 6, que mostra a sequência de eventos que compõe 

esse processo.  
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Figura 6 Processo de leitura em HDFS. 

Fonte: White, 2012. 

O cliente do HDFS envia a instrução de abertura para comunicar a requisição de 

leitura de um determinado arquivo (passo 1). O sistema de arquivos distribuído 

realiza uma chamada de procedimento remoto (RPC) ao NameNode que indica a 

localização dos blocos que compõem o arquivo (passo 2). Para cada bloco, o 

servidor mestre retorna o endereço de cada DataNode que possui uma cópia do 

bloco, além disso, os nós escravos são organizados e escolhidos a servir a 

requisição de acordo com a proximidade de rede com o cliente.   

No passo seguinte (passo 3) o cliente fecha a comunicação direta entre o DataNode 

que possui o primeiro bloco do arquivo, repetindo a comunicação com os demais nós 

que armazenam os blocos restantes para leitura do arquivo (passos 4 e 5). Quando 

os blocos estão organizados e o cliente finaliza sua operação de leitura, o mesmo 

envia uma chamada de fechamento (passo 6). (WHITE, 2012) 

2.4.4 Anatomia de escrita do HDFS 

Para ilustrar como ocorre o processo de escrita de um arquivo no sistema de 

arquivos HDFS, avalie a Fig. 7, que particulariza a sequência de eventos que 

compõe esse procedimento. 
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Figura 7 Processo de escrita em HDFS. 

Fonte: White, 2012. 

O cliente envia uma requisição de criação ao sistema de arquivos distribuído (passo 

1). O sistema de arquivos distribuído realiza uma chamada de procedimento remoto 

(RPC) ao NameNode solicitando a criação de um novo arquivo no namespace 

(passo 2). O NameNode executa então uma varredura nos DataNode para garantir 

que o arquivo não existe e que não possui blocos atrelados a ele. Com a certeza de 

que não existe o arquivo duplicado no cluster, o cliente inicia a escrita do arquivo 

que é fatiado em blocos, que são distribuídos entre os DataNodes, os quais realizam 

em paralelo a replicação dos blocos. 

No momento que ocorre a distribuição dos blocos, os registros são armazenados 

nos DataNodes (passo 4) e recebem entre si pacotes com o reconhecimento 

daquela operação (passo 5). Quando o arquivo é armazenado por completo e o 

cliente finaliza sua operação de escrita, o mesmo envia uma chamada de 

fechamento (passo 6). (WHITE, 2012) 

2.5 Trabalhos correlatos 

Embasado no princípio que o tempo de resposta em operações de leitura e escrita 

está diretamente relacionado ao tamanho do arquivo, Dong et al. (2014) traz 

fórmulas matemáticas que ilustram como essa relação se comporta. Ao final, são 
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desenvolvidos modelos de desempenho dinâmicos através das características e 

comportamentos de leitura e escrita presentes em ambientes HDFS, as quais foram 

analisadas em conjunto com outras variáveis como tamanho de bloco e largura de 

banda. Esse artigo embasa a proposta aqui apresentada, mostrando os detalhes da 

estrutura do HDFS, para que seja possível a partir de outros conhecimentos propor 

uma solução para o problema dos arquivos pequenos. 

Li, Lin e Wang (2013) abordam sobre o impacto que o armazenamento massivo de 

arquivos pequenos causam ao ambiente Hadoop. De acordo com os autores, esse 

framework foi baseado em um modelo feito pelo Google para armazenar grandes 

arquivos, porém tem enfrentando alguns desafios, pois seu uso tem-se disseminado, 

principalmente, em redes sociais, nas quais o uso de arquivos pequenos como fotos 

e vídeos é muito comum. Plataformas que realizam grandes cargas de upload, 

entretanto, são arquivos de baixa volumetria. Assim utilizam a técnica denominada 

HMPI (Hadoop Multimedia Processing Interface), para processar com um bom nível 

de desempenho, volumes massivos de arquivos pequenos. Isso é possível, pois 

como ocorre com o HIPI (Hadoop Image Processing Interface), a arquitetura de 

armazenamento concatena os arquivos em um pacote (bundle) e indexa os meta-

dados de vídeos e fotos, ao passo que as instruções de MapReduce aceleram o 

processamento distribuído. 

Já Islam et al. (2015) propõem para melhorar a proteção dos dados, a revisão de 

como ocorre a replicação dos segmentos de bloco de dados, os quais são 

espalhados entre os nós do cluster Hadoop que, por sua vez, depende da rede de 

comunicação e do tipo da tecnologia do hardware de armazenamento presente para 

obter desempenho. Para tal apresentam o Triplo-H (o nome desta solução vem da 

combinação de “Hybrid design of HDFS with Heterogeneous storage”), que prevê o 

uso de tecnologia heterogêneas como RAM-Disk, SSD e HDD em clusters HPC 

(High-Performance Computing). Através deste modelo, é possível dividir em 

camadas, orientadas ao desempenho e considerando o grau de importância do dado 

ao sistema, cada tipo de arquivo. 
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3 SOLUÇÃO PROPOSTA 

Nesse capitulo apresenta-se opções de estruturação de armazenamento de um 

Hadoop Distributed File System dado um cenário local, onde há presença massiva 

de arquivos pequenos (menores que 64 MB). Serão opções de boas práticas, 

incluindo a organização de diferentes tecnologias de persistência de dados, afim de 

garantir desempenho na escrita e leitura dos dados e, por consequência 

desempenho nas aplicações que utilizam esse sistema de arquivos distribuído. 

3.1 Descrição do problema 

Como citado, o HDFS foi desenvolvido para manipular arquivos grandes e, por esse 

motivo raiz não tem bom desempenho com arquivos considerados pequenos. 

Arquivos denominados pequenos são todos aqueles que possuem volumetria menor 

do que o bloco configurado no HDFS. Por padrão, o tamanho do bloco no HDFS é 

64 MB, porém esse valor pode ser alterado para índices superiores, de acordo com 

a aplicação. 

Existe uma grande variedade de motivos que possibilitam um cenário de enxurrada 

de pequenos arquivos em HDFS. O primeiro deles está na utilização deste sistema 

de arquivos para persistir milhares de arquivos, como fotos e pequenos vídeos que 

são copiados diretamente em HDFS sem modificações. Outro fator que potencializa 

a criação de pequenos arquivos está na utilização do HDFS em aplicações do tipo 

near real-time, onde ocorrem pequenas cargas de dados, por período. 

A manipulação de arquivos pequenos atinge, principalmente, a utilização de 

memória do NameNode. Cada bloco no Hadoop é representando por um objeto na 

memória do NameNode, o qual aloca 150 bytes. Deste modo, analisando a Fig 8, 

caso tenha-se um arquivo menor que 1 MB, esse irá consumir da memória do 

NameNode a mesma quantidade que um arquivo de 64 MB, desperdiçando assim, 

recursos valiosos em um ambiente voltado à Big Data.  
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Figura 8 Consumo de memória RAM por objeto.  

Fonte: Elaborada pelo autor 

3.2 Tratativa do problema 

O ponto inicial que será abortado nesse trabalho está ligado à tradução das 

necessidades das aplicações que utilizam o HDFS. Na fase de definições, o 

profissional responsável pelo design da solução de armazenamento receberá, 

inicialmente, a taxa esperada de vazão, nas operações de leitura e escrita do 

sistema. O entendimento das variáveis que compõem um cenário HDFS é de 

extrema importância, pois muitos fatores influenciam diretamente no desempenho 

deste sistema de arquivo distribuído. A variável central desta discussão está na 

relação entre o tamanho do arquivo e as operações de leitura e escrita. 

Apoiado em um modelo dinâmico, o qual é abalizado na identificação do sistema 

para estabelecer comportamentos de desempenho nas operações de leitura e 

escrita do HDFS. Essa análise permeia diferentes cenários, para que seja validada a 

eficácia desta abordagem. 

Pontua-se que a taxa de transferência é a taxa de vazão média realizada nas 

operações de leitura e escrita, TRrd e TRwr, respectivamente, cuja unidade 

computacional é medida em MB/s (megabytes por segundo). Representadas pelas 

equações 1 e 2:  (DONG et al., 2014)  

𝑇𝑅𝑤𝑟 =  
𝐿𝑤𝑟

𝑇𝑤𝑟
  (1) 𝑇𝑅𝑟𝑑 =

𝐿𝑟𝑑

𝑇𝑟𝑑
  (2) 
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Onde 𝐿𝑤𝑟 representa o tamanho do arquivo escrito, 𝑇𝑤𝑟 representa o tempo 

consumido pela operação. Já o 𝐿𝑟𝑑 corresponde ao tamanho do arquivo lido, 

enquanto o 𝑇𝑟𝑑 descreve o tempo consumido na instrução de leitura. 

Sendo K o tamanho do arquivo, a equação 3 apresenta o tempo gasto para uma 

operação de escrita no HDFS. 

𝑇𝑤𝑟(𝑘) = 𝑇𝑐𝑟𝑒 + ⌈
𝑘

𝐵𝑆
⌉ ∗ (𝑇𝑎𝑑𝑏 + 𝑇𝑟𝑒𝑑 + 𝑇𝑝𝑖𝑝) + ∑ 𝑇𝑝𝑎𝑐𝑖 + 𝑇𝑐𝑝𝑙

⌈𝑘/𝑃𝑆⌉
𝑖=1  (3) 

Onde 𝑇𝑐𝑟𝑒 é o tempo gasto pela criação do meta-dado no sistema de arquivos 

namespace, presente no NameNode. 𝑇𝑎𝑑𝑏 representa o tempo gasto para replicação 

dos blocos, que por padrão divide-se em três DataNodes. O tempo gasto para que o 

NameNode receba a lista dos DataNodes utilizados é denominado 𝑇𝑟𝑒𝑑. O período 

gasto pelo processo de comunicação do tipo socket do cliente HDFS com os 

DataNodes recebe o valor 𝑇𝑝𝑖𝑝. O tempo necessário pela fragmentação dos blocos, 

bem como a persistência dos dados, aviso de conclusão de operação e verificação 

via checksum recebe o valor 𝑇𝑝𝑎𝑐𝑖 . Com o término da instrução de escrita, o tempo 

necessário para finalizar a conexão e verificar as réplicas é chamado de  𝑇𝑐𝑝𝑙. 

(DONG et al., 2014) 

Deste modo, a taxa de transferência quando escreve-se um arquivo de tamanho k é 

dado pela equação 4: 

𝑇𝑅𝑤𝑟(𝑘) =
𝑘

𝑇𝑐𝑟𝑒+ ⌈
𝑘

𝐵𝑆
⌉∗(𝑇𝑎𝑑𝑏+𝑇𝑟𝑒𝑑+𝑇𝑝𝑖𝑝)+ ∑ 𝑇𝑝𝑎𝑐𝑖 +𝑇𝑐𝑝𝑙

⌈𝑘/𝑃𝑆⌉
𝑖=1

 (4) 

Onde BS é o tamanho do bloco e PS é o tamanho do pacote.  

De forma semelhante à escrita, a equação 5 representa o tempo para leitura de um 

arquivo de tamanho K.  

𝑇𝑟𝑑(𝑘) =  ⌈
𝑘

𝐵𝑆∗𝑝𝑟𝑒
⌉ ∗ (𝑇𝑎𝑠𝑙 + 𝑇𝑟𝑒𝑙) + ⌈

𝑘

𝐵𝑆
⌉ ∗  𝑇𝑎𝑠𝑏 + ∑ 𝑇𝑟𝑒𝑏𝑖

⌈𝑘/𝐵𝑆⌉
𝑖=1  (5) 

Onde 𝑇𝑎𝑠𝑙 é o tempo gasto pela requisição do cliente, localização dos blocos 

repartidos pelos DataNodes, os quais são ordenados pela distância na topologia de 

rede. 𝑇𝑟𝑒𝑙 representa o período gasto pelo NameNode para retornar a requisição de 
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localização dos blocos. A cada bloco, o cliente envia uma requisição de leitura para 

o DataNode com menor distância de rede, chamado de 𝑇𝑎𝑠𝑏. 𝑇𝑟𝑒𝑏   é o tempo gasto 

para busca dos pacotes até a conclusão da transferência do bloco para o cliente. 

Por último, pre representa a quantidade de blocos que cada instrução trata 

paralelamente, por padrão, no HDFS são tratados 10 blocos.  

A taxa de transferência para a operação de leitura de um arquivo de tamanho k é 

dado pela equação 6: (DONG et al., 2014) 

𝑇𝑅𝑟𝑑(𝑘) =
𝑘

⌈
𝑘

𝐵𝑆∗𝑝𝑟𝑒
⌉∗(𝑇𝑎𝑠𝑙+ 𝑇𝑟𝑒𝑙)+ ⌈

𝑘

𝐵𝑆
⌉∗ 𝑇𝑎𝑠𝑏+ ∑ 𝑇𝑟𝑒𝑏𝑖

⌈𝑘/𝐵𝑆⌉
𝑖=1

 (6) 

Uma vez que foram identificadas as variáveis presentes no ambiente HDFS, os 

passos seguintes têm como principal objetivo, a redução do tempo gasto, 

consequentemente, melhores taxas de vazão são alcançadas.      

Deste modo, o segundo ponto que será tratado está relacionado ao consumo de 

processamento e memória que arquivos de vídeo e fotos realizam no cluster 

Hadoop, em especial no HDFS. Os processos que o HDFS realiza em instruções de 

leitura e escrita seguem o roteiro descrito no Capítulo 2, onde o NameNode é 

responsável por orquestrar todas as ações, as quais são armazenadas em memória 

e sofrem penalidade quando se trata de arquivos pequenos. 

Para exemplificar o consumo de memória de arquivos pequenos em HDFS, foram 

utilizados 10 milhões de arquivos do tipo imagem, armazenados como objetos, com 

tamanho variando entre 1 KB e 200 KB. Esse acervo consumirá 2 GB de memória 

de um NameNode, valor esse considerado alto tendo em vista que a mesma 

quantidade de memória poderia processar uma volumetria muito superior, porém em 

arquivos grandes. 

Pode-se utilizar do modelo de processamento HMPI (Hadoop Multimedia Processing 

Interface) para melhorar o desempenho do HDFS para armazenar arquivos de 

multimídia pequenos com eficiência. É através de uma interface única entre o cliente 

e o cluster Hadoop que as imagens e vídeos são classificados automaticamente. A 

seguir, esses arquivos pequenos se fundem e ocorre a criação de um novo arquivo, 
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no entanto, um arquivo grande com o tamanho do bloco configurado. Nesse cenário, 

as mídias possuem seus meta-dados armazenados em um arquivo do tipo índice, 

atrelando a vantagem de processamento paralelo com uso do MapReduce, tornando 

assim, melhor a experiência no acesso aos arquivos de imagens e vídeos. (LI; LIN; 

WANG, 2013) 

Nota-se na Fig. 9 que modelo HMPI é composto por três principais camadas: uma 

interface usuária responsável por unificar as requisições dos usuários comuns, 

atendendo as solicitações para carregar, baixar arquivos ou procurar arquivos que 

estejam persistidos no repositório HDFS (passo 1); uma camada de processamento 

do modelo HMPI a qual possui as funções de identificar o tipo e tamanho de 

arquivos multimídia, distribuir a segmentação de vídeo e fundir os arquivos (passo 

2), bem como interagir com o cliente HDFS (passo 3); por último, a camada do 

HDFS persiste os arquivos gerados, frutos do HMPI, de forma eficiente (passo 4).  

 

 

Figura 9 Arquitetura do modelo HMPI em 3 camadas. 

Fonte: Li, Lin e Wang, 2013. 

A ideia principal para projetar o HMPI foi de facilitar a experiência do HDFS na 

utilização deste sistema de arquivos distribuído para manipular e armazenar 

arquivos de imagens e vídeos, ao passo que a quantidade de memória necessária é 

reduzida, pode-se processar mais informações a custos reduzidos de hardware. 
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Outra proposta para melhorar o desempenho no uso de grande quantidade de 

arquivos pequenos aqui apresentada consiste no uso de tecnologias heterogêneas 

de armazenamento para minimizar os gargalos que o HDFS possui em sua forma de 

arquitetura padrão. Utiliza-se como base, os estudos realizados por Islam et al. 

(2015) que promovem um modelo híbrido de persistência dos dados, através de 

discos do tipo RAM-Disk, SSD e HDD, orientado ao desempenho e relevância. 

No cenário híbrido proposto, observa-se que as tecnologias de armazenamento 

possuem características distintas e o grande diferencial entre elas está na largura de 

banda máxima, ou em outras palavras, o quanto de vazão ela é capaz de garantir. 

Na Fig. 10, é possível observar os valores que diferenciam esses hardwares, entre 

desempenho e capacidade.  

 

Figura 10 Comparativo entre tecnologias.  

Fonte: Adaptado de Islam et al., 2015 

Por meio do modelo de arquitetura de armazenamento chamado de Triplo-H, os 

gargalos de I/O são minimizados por ações conhecidas como buffering e caching. 

Em resumo, essas ações preveem a utilização de memória RAM ou dispositivos de 

armazenamento que possuam desempenho próximo à memória RAM, para persistir 

os dados mais recentes ou aqueles que são mais acessados pelo ambiente.  

A hierarquia de armazenamento, relacionada na Fig. 10 presente no modelo Triplo-

H, têm três principais tipos de hardware:  

 RAM-Disk que é um dispositivo baseado em memória, mais rápido que os 

discos SSDs em pelo menos 3x que suportam altas cargas de leitura e 

escrita.  
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 Discos de estado sólido, chamados de SSD, proporcionam 

armazenamento com desempenho elevado e são essencialmente 

adequados à aplicações em Big Data. 

 Unidades de disco rígido, chamado de HDD, aprovisionam a maior 

quantidade de armazenamento de dados, entretanto são lentos em termos 

de desempenho em comparação com as outras duas tecnologias citadas.  

A proposta consiste em se empregar os dispositivos do tipo RAM-Disk como primeira 

camada de buffer-cache, além de aproveitar os SSDs para aumentar a primeira 

camada, eles serão importantes para assegurar os dados em um cenário de falha, 

visto que os discos do tipo RAM-Disk possuem sensibilidade à falta de fornecimento 

elétrico. Por último, serão empregados os discos do tipo HDD, pois armazenar toda 

a volumetria de um ambiente Big Data em discos rápidos seria muito caro e, 

impossibilitaria o vasto uso desta solução. (ISLAM et al., 2015) 

Os principais artefatos desta arquitetura híbrida de persistência de dados em HDFS 

são: 

 Um seletor de política junto ao cliente HDFS que atribui peso a diferentes 

arquivos, conforme configuração e necessidade do negócio/aplicação. 

 Políticas de posicionamento de dados que determinam as regras para 

utilizar de forma otimizada os diferentes tipos de armazenamento 

disponíveis no cluster. 

 Um mecanismo de posicionamento de dados escolhe o tipo do dispositivo 

de armazenamento apropriado, baseado nos pesos gerados pelo cliente 

HDFS, além de avaliar a disponibilidade da capacidade de 

armazenamento necessária, grava os dados no dispositivo determinado. É 

também esse artefato responsável por detectar dados que não são críticos 

e, por consequência, não necessitam de desempenho e devem ser 

persistidos em discos do tipo HDD. 

No processo que envolve as políticas de posicionamento, a arquitetura proposta é 

subdivida em dois cenários, os quais são ilustrados na Fig. 11. A primeira forma é 

chamada de Posicionamento Ganancioso (Greedy Placement) que consiste em 



38 

 

 

gravar todas as entradas na camada de armazenamento mais nobre, deste modo, 

enquanto houver espaço no RAM-Disk ele é utilizado, passando a persistir o restante 

dos dados nas outras tecnologias disponíveis. Em um cenário que exemplifica essa 

forma, dá-se um arquivo Fi que foi segmentado em dois blocos Bi1 e Bi2, onde i é a 

identificação do arquivo. Desta maneira, os blocos pertencentes aos arquivos 

hipotéticos  F1, F2, F3  e Fn irão ocupar, inicialmente, os discos mais rápidos. Esse 

método de posicionamento é indicado para ambientes onde o grau de importância 

do arquivo respeita, entre outras coisas, especialmente, a linha do tempo.  

 

 

Figura 11 Politicas de posicionamento. 

Fonte: Adaptado de Islam et al., 2015 

Já na forma, conhecida como Posicionamento por Balanceamento de Carga (Load-

balanced Placement) todas as instruções são pulverizadas entre os dispositivos 

elencados através da classificação de peso do arquivo, que visa garantir que os 

arquivos mais sensíveis ao desempenho estarão na tecnologia mais nobre. Deste 

modo, os arquivos F1, F2, F3 e FN terão seus blocos persistidos em dispositivos, 

respeitando a classificação do peso dado a eles. Além de ser a forma mais indicada 

para grande parte dos cenários, onde o HDFS é utilizado, é também a maneira que 

traz o melhor aproveitamento das tecnologias presentes. No modelo Ganancioso, 

todos os arquivos são armazenados, inicialmente, em dispositivos nobres e, 

posteriormente, são rebaixados quando avaliada sua importância. Contudo o 
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Posicionamento por Balanceamento de Carga otimiza essa classificação, evitando 

problemas como armazenamento de réplicas em discos do tipo RAM-Disk. 

3.3 Resultados obtidos  

Os resultados obtidos empregando as propostas de concatenação dos arquivos 

pequenos pelo modelo HMPI e a de utilização de tecnologias heterógenas para 

persistências dos dados em HDFS podem ser observados a seguir. 

Os testes do modelo HMPI foram realizados por Li, Lin e Wang (2013) construindo 

um cluster Hadoop utilizando-se de 5 computadores. Um nó atuando como 

NameNode com um processador Intel Xeon E5606 CPU 2.13GHz, 8GB memória e 1 

TB disco HDD. Enquanto os DataNodes possuíam um processador Intel Core i3 

CPU 2.93GHz, 4GB memória e 500GB de disco HDD. Em cada nó, foi instalado o 

sistema operacional CentOS Server 6.3 com kernel 2.6.32-279, Hadoop 1.0.3, Java 

1.6.25, com três replicações e bloco HDFS com tamanho de 64 MB. 

Tendo ciência de que o número grande de arquivos de mídia afeta o desempenho 

do HDFS, em especial a alocação de memória RAM, foram utilizados conjuntos de 

arquivos que possuem 3000, 6000, 9000, 120000, 15000, 18000 e 21000 imagens. 

Para o experimento com vídeos, foram utilizados 100 vídeos com 2 GB cada, 

divididos em segmentos de 210 MB, compondo conjuntos de 200, 400, 600, 

800 e 1000 segmentos. 

Os resultados da administração de arquivos de imagens em relação ao HDFS 

padrão podem ser observados nas Figs. 12 e 13 a seguir: 
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Figura 12 Uso de memória do NameNode. 

Fonte: Adaptado de Li, Lin e Wang, 2013. 

 

Figura 13 Uso de memória do DataNode. 

Fonte: Adaptado de Li, Lin e Wang, 2013. 

Já em relação aos arquivos de vídeo, não houve significativa melhora do 

armazenamento de arquivos de vídeo, bem como o uso de memória de NameNode, 

visto que os arquivos de vídeo geralmente possuem tamanhos superiores ao 

tamanho do bloco padrão, que é de 64 MB. Porém, o uso do HMPI fornece uma 

interface única para armazenar e acessar arquivos de vídeo, o qual garante a 

vantagem de utilizar processos MapReduce do Hadoop para ler e processar 
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arquivos vídeo, provendo diminuição no tempo de resposta, como é possível ver a 

seguir na Fig. 14. 

 

Figura 14 Comparação de consumo de tempo. 

Fonte: Adaptado de Li, Lin e Wang, 2013. 

Conclui-se por meio das experiências de Li, Lin e Wang (2013) que o modelo HMPI 

promove a diminuição da utilização de memória do NameNode e dos DataNodes, ao 

passo que os arquivos pequenos são tratados como arquivos maiores, por meio de 

um processo de fusão. O experimento ainda mostra como é possível otimizar a 

utilização do HDFS para administrar a enxurrada de arquivos de mídia oriundos de 

redes sociais. Esse exemplo, coloca essa forma de organização à frente das demais 

soluções de armazenamento. 

Nos experimentos relacionados às tecnologias heterogêneas de armazenamento, 

Islam et al. (2015) utilizaram três clusters distintos para comprovar a eficácia do 

modelo Triplo-H em relação ao HDFS padrão:  

 Cluster A – O Intel Westmere Cluster é composto por 9 nós, cada nó 

possui processador Xeon Dual 4-core de 2.67 GHz, 24 GB de RAM, dois 

discos HDD de 1 TB, um disco SSD de 300 GB além de 12 GB em RAM 

Disk. O sistema operacional é o Red Hat Enterprise Linux Server 6.1. 

 Cluster B – O SDSC Gordon é composto por 1024 nós de processamento 

e 64 I/O nós, cada compute node possui dois processadores 8-core 2.6 
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GHz Intel EM64T Xeon E5, 64 GB de RAM, 16 discos SSD de 300 GB e 

32 GB em RAM Disk. O sistema operacional é o CentOS 6.4. 

 Cluster C – Cada nó do TACC Stampede possui 2 processadores 8-core 

Intel Sandy Bridge de 2,70 GHz, 32 GB de RAM, um disco HDD de 80 GB 

e outro RAM Disk de 16 GB. Foi escolhido o CentOS 6.3 como sistema 

operacional. 

Em todos os clusters a versão do Hadoop instalado foi a versão 2.6.0 com JDK 

1.7.0. Nos testes realizados com os Clusters A e B foram utilizadas as tecnologias 

de armazenamento RAM Disk, SSD e HDD. Entretanto, o Cluster C não possui 

discos do tipo SSD e, por esse motivo não há uma camada intermediaria para a 

persistência dos blocos oriundos do HDFS. Essa ausência é válida para o estudo 

aqui apresentado, visto que pode-se encontrar esse tipo de limitação no dia-a-dia. 

O primeiro experimento realizado foi através, do benchmark TestDFSIO, utilizado 

largamente em teste de estresse do HDFS em operações de leitura e escrita. A Fig. 

15 mostra os valores obtidos por meio do Cluster C, onde foram empregados 40 GB 

de dados em 8 DataNodes, 80 GB em 16 DataNodes e 160 GB em 32 DataNodes. 

Ainda na Fig. 15, pode-se comprovar que o modelo Triplo-H obteve desempenho 7 

vezes maior do que o HDFS padrão nas operações de escrita. Superioridade essa 

garantida através da larga camada de buffer-cache. 

 

Figura 15 Avaliação do TestDFSIO no Cluster C em escrita. 

Fonte: Adaptado de Islam et al., 2015. 
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Nas operações de leitura, o Triplo-H alcançou marcas 2 vezes melhores do que o 

HDFS com configuração nativa, graças a redução do número de I/O. Os valores 

obtidos estão apresentados na Fig. 16. 

 

Figura 16 Avaliação do TestDFSIO no Cluster C em leitura. 

Fonte: Adaptado de Islam et al., 2015. 

Foram utilizados outras aplicações de benchmark, além do TestDFSIO para testar o 

comportamento do Triplo-H em relação ao HDFS. Para criação de arquivos, foram 

aplicados as ferramentas: TeraGen, RandomTextWriter, e RandomWriter. 

O RandomTextWriter foi aplicado em 8 nós do Cluster A, onde o Triplo-H obteve 

redução no tempo de execução em 48% no volume de 60 GB em relação ao HDFS 

sem tecnologia heterogênea, conforme Fig. 17: 
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Figura 17 Tempo de execução do RandomTextWriter. 

Fonte: Adaptado de Islam et al., 2015. 

 

Já através da aplicação do TeraGen, em 32 nós do Cluster B, o desempenho do 

ambiente Triplo-H foi superior em 42%, comparando com outro ambiente sem essa 

proposta, de acordo com a Fig. 18.   

 

Figura 18 Tempo de execução do TeraGen. 

Fonte: Adaptado de Islam et al., 2015. 
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Na Fig. 19, 32 nós do Cluster C foram utilizados nos testes com RandomWriter, onde 

pode-se observar que houve redução do tempo de execução em 3 vezes, com o 

Triplo-H. 

 

Figura 19 Tempo de execução do RandomWriter. 

Fonte: Adaptado de Islam et al., 2015. 
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modelo que balanceia a carga obteve melhores resultados. Já o experimento com o 

Cluster C (que não possui discos SSD), demonstrou que o modelo Ganancioso 

trouxe taxas de vazão superiores em todas as execuções simultâneas, uma vez que 

nesse cenário não há a presença de tecnologia intermediaria para persistência dos 

blocos (Fig. 21). 
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Figura 20 Resultados do TestDFSIO no Cluster A em escrita. 

Fonte: Adaptado de Islam et al., 2015. 

 

Figura 21 Resultados do TestDFSIO no Cluster C em escrita. 

Fonte: Adaptado de Islam et al., 2015. 
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4 CONCLUSÃO 

A definição de uma arquitetura de armazenamento que garanta bom desempenho, é 

premissa para o ciclo de vida de qualquer solução de armazenamento. As 

dificuldades encontradas no ambiente selecionado, evidenciam que apesar de um 

sistema de arquivos que foi desenvolvido para Big Data, é de extrema importância 

uma análise profunda e contínua do desempenho deste em diferentes formas de 

utilização, garantindo assim, sobrevida e amplo emprego. 

Inicialmente, o HDFS foi desenvolvido para manipulação de grande quantidade de 

arquivos grandes, ou seja, que superem o tamanho da blocagem padrão. Entretanto, 

a utilização deste sistema de arquivos distribuídos tem se expandindo para o 

armazenamento de dados advindos de redes sociais e aplicações do tipo near real-

time, como a Internet das Coisas (IoT), que geram enxurradas de arquivos 

pequenos. A experiência do HDFS padrão, nesses cenários, não otimiza a utilização 

da memória RAM do cluster Hadoop, que é sublocada. 

Pode-se reforçar estas afirmações, por meio de equações matemáticas, que 

despontam que as taxas de transferência em um ambiente HDFS sofrem influência, 

principalmente, pelo tamanho do arquivo, tamanho do bloco, velocidade do hardware 

de armazenamento e desempenho da camada de rede de comunicação entre o 

NameNode e os DataNodes. 

Os estudos e resultados presentes neste trabalho, feitas a partir de trabalhos 

prévios, de concatenação dos arquivos pequenos pelo modelo HMPI e a utilização 

de tecnologias heterógenas para persistências dos dados, trazem ao HDFS maior 

agilidade nas operações de escrita e leitura.  

Para confirmar os benefícios das técnicas apresentadas, como trabalhos futuros, 

anseia-se que as duas técnicas sejam empregas em paralelo em experimentos.  Isto 

permitiria observações, que poderiam enriquecer as equações matemáticas, visto 

que podem haver outros parâmetros que não foram abordados nos trabalhos 

prévios. O experimento não foi possível de ser realizado durante o desenvolvimento 

dessa monografia, pois criar um modelo que exponha todas as variáveis em um 
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cenário computacional, caracteriza uma ação complexa e exige um tempo maior do 

que o disponível para o desenvolvimento do trabalho aqui apresentado. 



49 

 

 

5 REFERÊNCIAS BIBLIOGRÁFICAS 

AGARWAL, Arpit; RADIA, Sanjay; SRINIVAS, Suresh. Heterogeneous Storage for 

HDFS. Forest Hill: The Apache Software Foundation, 2013. 11 p. 

BORTHAKURR, Dhruba. HDFS Architecture Guide. Forest Hill: The Apache 

Software Foundation, 2008. 13 p. 

DONG, Bo et al. Performance models and dynamic characteristics analysis for 

HDFS write and read operations: A systematic view. The Journal Of Systems And 

Software. Xi'an, p. 132-151. 19 fev. 2014. 

GNANASUNDARAM, Somasundaram; SHRIVASTAVA, Alok (Ed.). Information 

Storage and Management: Storing Managing and Protecting Digital Information in 

Classic, Virtualized, and Cloud Environments. 2. ed. Indianapolis: John Wiley & 

Sons, Inc, 2012. 530 p. 

ISLAM, Nusrat Sharmin et al. Triple-H: A Hybrid Approach to Accelerate HDFS on 

HPC Clusters with Heterogeneous Storage Architecture. Ohio: IEEE, 2015. 

KLUG, Anthony; TSICHRITZIS, Dionysios C. The ANSI/X3/SPARC DBMS 

Framework: Report of the Study Group on Database Management Systems. 2. ed. 

New York: Computer Systems Research Group, 1975. 140 p. 

LI, Jia; LIN, Kunhui; WANG, Jingjin. Design of the Mass Multimedia Files Storage 

Architecture Based on Hadoop.Colombo: The 8th International Conference On 

Computer Science & Education, 2013. 

MICHAELIS (Brasil). Michaelis Dicionário Brasileiro da Língua Portuguesa. São 

Paulo: Editora Melhoramentos Ltda., 2016. 

PRESTON, W. Curtis. Using SANs and NAS. Sebastopol: O'reilly & Associates, Inc, 

2002. 66 p. 

SNIA (Colorado Springs). Storage Networking Industry Association. 2016. 

Disponível em: <www.snia.org/>. Acesso em: 22 nov. 2016. 

TAURION, Cezar. Big Data. Rio de Janeiro: Brasport Livros e Multimídia Ltda., 

2013. 102 p. 



50 

 

 

VENNER, Jason. Pro Hadoop: Build scalable, distributed applications in the cloud. 

New York: Apress, 2009. 442 p. 

WHITE, Tom. Hadoop: The Definitive Guide. 3. ed. Sebastopol: O'reilly Media Inc., 

2012. 657 p. 

XUAN, Pengfei et al. Accelerating big data analytics on HPC clusters using two-level 

storage. Parallel Computing, [s.l.], p.1-17, ago. 2016. Elsevier BV. 

http://dx.doi.org/10.1016/j.parco.2016.08.001. 

 

http://dx.doi.org/10.1016/j.parco.2016.08.001

